![2021-2022学年度京改版八年级数学下册第十六章一元二次方程达标测试试卷第1页](http://img-preview.51jiaoxi.com/2/3/12700320/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度京改版八年级数学下册第十六章一元二次方程达标测试试卷第2页](http://img-preview.51jiaoxi.com/2/3/12700320/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度京改版八年级数学下册第十六章一元二次方程达标测试试卷第3页](http://img-preview.51jiaoxi.com/2/3/12700320/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课堂检测
展开
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课堂检测,共21页。试卷主要包含了下列所给方程中,没有实数根的是,用配方法解方程,则方程可变形为等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若是关于的方程的一个根,则的值是( )A. B. C.1 D.22、若一元二次方程ax2+bx+c=0的系数满足ac<0,则方程根的情况是( )A.没有实数根 B.有两个不相等的实数根C.有两个相等的实数根 D.无法判断3、一元二次方程的二次项系数、一次项系数、常数项分别是( )A.2,1,5 B.2,1,-5 C.2,0,-5 D.2,0,54、已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2,x2=4,则m-n的值是( )A.-10 B.10 C.-6 D.65、中秋佳节前某月饼店7月份的销售额是2万元,9月份的销售额是4.5万元,从7月份到9月份,该店销售额平均每月的增长率是( )A.20% B.25% C.50% D.62.5%6、用配方法解方程x2-4x-3=0时,配方后的方程为( )A.(x+2)2=1 B.(x-2)2=1 C.(x+2)2=7 D.(x-2)2=77、某校八年级组织篮球赛,若每两班之间赛一场,共进行了28场,则该校八年级有( )个班级.A.8 B.9 C.10 D.118、下列所给方程中,没有实数根的是( )A. B.C. D.9、用配方法解方程,则方程可变形为( )A. B. C. D.10、用配方法解一元二次方程x2﹣10x+21=0,下列变形正确的是( )A.(x﹣5)2=4 B.(x+5)2=4 C.(x﹣5)2=121 D.(x+5)2=121第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知关于x的一元二次方程3x2+4x+m=0有实数根,则m的取值范围是_______.2、已知实数a,b满足条件a2﹣7a+2=0,b2﹣7b+2=0(a≠b),则a+b=_____.3、疫情期间居民为了减少外出时间,大家更愿意使用APP在线上买菜,某买菜APP今年一月份新注册用户为200万,三月份新注册用户为338万,设二、三两个月新注册用户每月平均增长率是x,根据题意,可列方程为___________.4、如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为_______.5、已知关于x的一元二次方程kx2﹣4x﹣2=0有两个不相等的实数根,则k的取值范围是 _____.三、解答题(5小题,每小题10分,共计50分)1、用适当的方法解下列方程:(1).(2)2、如图,是边长为的等边三角形,点P,Q分别从顶点A,B同时出发,点P沿射线运动,点Q沿折线运动,且它们的速度都为.当点Q到达点A时,点P随之停止运动连接,,设点P的运动时间为.(1)当点Q在线段上运动时,的长为_______(),的长为_______()(用含t的式子表示);(2)当与的一条边垂直时,求t的值;(3)在运动过程中,当是等腰三角形时,直接写出t的值.3、解方程:.4、解下列方程:(1)(2x-1)2 = x2;(2)(x+1)(x+3)=-1.5、用配方法解方程3﹣6x+1=0. -参考答案-一、单选题1、A【分析】将n代入方程,然后提公因式化简即可.【详解】解:∵是关于x的方程的根,∴,即,∵,∴,即,故选:A.【点睛】本题考查了一元二次方程的解,理解题意,熟练运用提公因式是解题关键.2、B【分析】判别式Δ=b2﹣4ac,由于ac<0,则﹣ac>0,而b2≥0,于是可判断Δ>0,然后根据判别式的意义判断根的情况.【详解】解:∵关于x的一元二次方程为ax2+bx+c=0,∴Δ=b2﹣4ac,∵ac<0,∴﹣ac>0,又∵b2≥0,∴Δ>0,∴方程有两个不相等的实数根.故选B.【点睛】本题主要考查了一元二次方程根的判别式,解题的关键在于能够熟知一元二次方程根的情况与判别式△的关系:(1)Δ>0,方程有两个不相等的实数根;(2)Δ=0,方程有两个相等的实数根;(3) Δ<0,方程没有实数根.3、B【分析】根据一元二次方程的基本概念,找出一元二次方程的二次项系数,一次项系数,以及常数项即可.【详解】解:∵一元二次方程2x2+x-5=0,∴二次项系数、一次项系数、常数项分别是2、1、-5,故选:B.【点睛】此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a≠0).4、D【分析】根据一元二次方程x2+mx+n=0的两个实数根分别为x1=2、x2=4结合根与系数的关系,分别求出m和n的值,最后代入m-n即可解答.【详解】解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2、x2=4,∴x1+x2=﹣m=-2+4,解得:m=﹣2,x1•x2=n=-2×4,解得:n=-8,∴m-n=﹣2-(-8)=6.故选D.【点睛】本题主要考查了一元二次方程根与系数的关系,根据根与系数的关系求出m、n的值是解答本题的关键.5、C【分析】设该商店销售额平均每月的增长率为x,利用9月份的销售额=7月份的销售额×(1+增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出该商店销售额平均每月的增长率为50%.【详解】解:设该商店销售额平均每月的增长率为x,依题意得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).∴该商店销售额平均每月的增长率为50%.故选:C.【点睛】本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.6、D【分析】根据配方法转化为的形式,问题得解.【详解】解:x2-4x-3=0,移项得,配方得,∴.故选:D【点睛】本题考查了配方法解一元二次方程,熟知配方法的步骤并准确配方(在二次项系数为1时,方程两边同时加上一次项系数一半的平方)是解题的关键.7、A【分析】设该校八年级有x个班级,利用比赛的总场次数=参赛的班级数×(参赛的班级数﹣1)÷2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设该校八年级有x个班级,依题意得:x(x﹣1)=28,整理得:x2﹣x﹣56=0,解得:x1=8,x2=﹣7(不合题意,舍去).故选:A.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.8、D【分析】逐一求出四个选项中方程的根的判别式Δ的值,取其小于零的选项即可得出结论.【详解】解:A、∵Δ=(﹣2)2﹣4×1×0=4>0,∴一元二次方程有两个不相等的实数根; B、∵Δ=(﹣4)2﹣4×5×(-2)=56>0,∴一元二次方程有两个不相等的实数根;C、∵Δ=(﹣4)2﹣4×3×1=4>0,∴一元二次方程有两个不相等的实数根; D、∵Δ=(﹣3)2﹣4×4×2=-23<0,∴一元二次方程没有实数根.故选:D.【点睛】本题考查了一元二次方程根的判别式,牢记“当Δ<0时,一元二次方程没有实数根”是解题的关键.9、D【分析】根据配方法解一元二次方程步骤变形即可.【详解】∵∴∴∴∴故选:D.【点睛】本题考查了配方法解一元二次方程,具体步骤为(1)化二次项系数为1. 当二次项系数不是1时,方程两边同时除以二次项系数(2)加上一次项系数一半的平方,使其中的三项成为完全平方式,但又要使此方程的等式关系不变,故在右侧同时加上一次项系数一半的平方(3)配方后将原方程化为的形式,再用直接开平方的方法解方程.10、A【分析】利用配方法,方程的两边同时加上一次项系数一半的平方,即可求解.【详解】解:x2﹣10x+21=0,移项得: ,方程两边同时加上25,得: ,即 .故选:A【点睛】本题主要考查了利用配方法解一元二次方程,熟练掌握利用配方法,需要方程的两边同时加上一次项系数一半的平方是解题的关键.二、填空题1、【分析】一元二次方程有实数根,则,建立关于m的不等式,求出m的取值范围.【详解】解:∵关于x的一元二次方程3x2+4x+m=0有实数根,∴,故答案为:.【点睛】本题主要考查了一元二次方程根的判别式,解题的关键是明确当一元二次方程有实数根时,.2、7【分析】利用一元二次的求根公式可得答案.【详解】解:由实数a,b分别满足a2-7a+2=0,b2-7b+2=0,可得a,b分别是方程x2-7x+2=0的两个不等实数根,由根与系数的关系可得a+b=7,故答案为:7.【点睛】本题考查了根与系数的关系,属于基础题,关键是把a,b看成方程的两个根后再根据根与系数的关系解题.3、【分析】设二、三两个月新注册用户每月平均增长率是x,根据该买菜APP今年一月份及三月份新注册用户人数,即可得出关于x的一元二次方程.【详解】解:设二、三两个月新注册用户每月平均增长率是x,
依题意,得:200(1+x)2=338,故答案为:【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.4、(62﹣x)(42﹣x)=2400.【分析】设道路的宽为x米,则种植草坪的部分可合成长(62﹣x)米,宽为(42﹣x)米的矩形,根据草坪的面积为2400平方米,即可得出关于x的一元二次方程,此题得解.【详解】解:设道路的宽为x米,则种植草坪的部分可合成长(62﹣x)米,宽为(42﹣x)米的矩形,根据题意得(62﹣x)(42﹣x)=2400.故答案为:(62﹣x)(42﹣x)=2400.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.5、k>-2且k≠0k≠0且k>-2【分析】根据关于x的一元二次方程kx2-4x-2=0有两个不相等的实数根,可得出判别式大于0,再求得k的取值范围.注意:二次项系数不等于零.【详解】解:∵关于x的一元二次方程kx2-4x-2=0有两个不相等的实数根,∴Δ=(-4)2-4×(-2)k>0,解得k>-2,∵k≠0,∴k的取值范围k>-2且k≠0,故答案是:k>-2且k≠0.【点睛】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.三、解答题1、(1),(2),【分析】(1)直接利用开平方法解一元二次方程即可;(2)直接利用因式分解法解一元二次方程即可.(1)解:∵,∴,∴,∴,;(2)解:∵,∴,∴,∴,.【点睛】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.2、(1);;(2)当或或时,PQ与的一条边垂直;(3)当或时,为等腰三角形.【分析】(1)根据点的位置及运动速度可直接得出;(2)根据题意分三种情况讨论:①当时,;②当时,;③当时,;作出图形,分别应用直角三角形中角的特殊性质求解即可得;(3)根据题意,分四种情况进行讨论:①当点Q在BC边上时,时;②当点Q在BC边上时,时;③当点Q在BC边上时,时;④当点Q在AC边上时,只讨论情况;分别作出四种情况的图形,然后综合运用勾股定理及解一元二次方程求解即可.【详解】解:(1)点Q从点B出发,速度为,点P从点A出发,速度为,∴,,∴,故答案为:;;(2)根据题意分三种情况讨论:①如图所示:当时,,∵三角形ABC为等边三角形,∴∴∴,由(1)可得:,解得:;②如图所示:当时,,∵∴∴,由(1)可得:,解得:;③如图所示:当时,,
∵∴∴,由(1)可得:,解得:;综上可得:当或或时,PQ与的一条边垂直;(3)根据题意,分情况讨论:①当点Q在BC边上时,时,如图所示:过点Q作,∵∴∴,∴,,,∴∵,∴,解得:或(舍去);②当点Q在BC边上时,时,如图所示:过点P作,∵∴∴,∴,,,∴∵,∴,解得:(舍去);③当点Q在BC边上时,时,如图所示:由图可得:,,,∴这种情况不成立;④当点Q在AC边上时,只讨论情况,如图所示:
过点Q作,过点C作,∵,为等边三角形,∴,,∴,,∴,∴,∴,∴,∵,,∴,∵,∴,解得:或(舍去),综上可得:当或时,为等腰三角形.【点睛】题目主要考查三角形与动点问题,包括勾股定理的应用,含角的直角三角形的特殊性质,等腰三角形的判定和性质,求解一元二次方程等,根据题意,作出相应图形,然后利用勾股定理求解是解题关键.3、或【分析】利用十字相乘因式分解,进而即可求解.【详解】,,∴或,解得:或.【点睛】本题主要考查解一元二次方程,熟练掌握“十字相乘法”是解题的关键.4、(1);(2).【分析】(1)先移项,再用因式分解法即可求解;(2)先整理为一般形式,对方程左边分解因式,即可求解.【详解】解:(1)(2x-1)2 = x2移项得,因式分解得,∴或,∴;(2)(x+1)(x+3)=-1原方程整理得,∴,∴.【点睛】本题考查了一元二次方程的解法,熟知一元二次方程的解法并根据方程特点灵活选择是解题关键,注意第(2)题有两个相等的实数根,不要漏写.5、=1+,=1﹣【分析】方程移项后,二次项系数化为1,两个加上一次项系数一半的平方,利用完全平方公式变形后,开方即可求出解.【详解】解:方程移项得:3﹣6x=﹣1,即﹣2x=﹣,配方得:=,开方得:x﹣1=±,解得 =1+,=1﹣.【点睛】本题考查了公式法解一元二次方程,熟练掌握求根公式是解题的关键.
相关试卷
这是一份2020-2021学年第十六章 一元二次方程综合与测试课时训练,共16页。试卷主要包含了方程x2﹣x=0的解是,下列方程中是一元二次方程的是,已知关于x的一元二次方程x2﹣,若方程的一个根为,则的值是等内容,欢迎下载使用。
这是一份数学八年级下册第十六章 一元二次方程综合与测试随堂练习题,共17页。试卷主要包含了把方程化成.等内容,欢迎下载使用。
这是一份数学八年级下册第十六章 一元二次方程综合与测试测试题,共17页。试卷主要包含了一元二次方程的解为,下列方程中是一元二次方程的是,不解方程,判别方程的根的情况是,一元二次方程的两个根是等内容,欢迎下载使用。