2021学年第五章 二元一次方程组综合与测试练习
展开京改版七年级数学下册第五章二元一次方程组难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后,他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共多少个子女?( )
A.1个 B.2个 C.3个 D.4个
2、如果与是同类项,那么的值是( )
A. B. C. D.
3、某校九年级学生到礼堂开会,若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳.若设学生人数为,长凳数为,由题意列方程组为( )
A. B.
C. D.
4、《九章算术》是中国古代数学著作之一,书中有这样的一个问题:今有黄金九枚,白银一十一枚,称之重,适等.交易其一,金轻十三两.问金、银一枚各重几何?大意是说:九枚黄金与十一枚白银重量相等,互换一枚,黄金比白银轻13两,问:每枚黄金、白银的重量各为多少?设一枚黄金的重量为x两,一枚白银的重量为y两,则可列方程组为( )
A. B.
C. D.
5、二元一次方程组的解是( )
A. B. C. D.
6、《九章算术》中记载了一个问题,原文如下:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”大意是:有几个人一起去买一件物品,每人出8文,多3文;每人出7文,少4文,求人数及该物品的价格.小明用二元一次方程组解此问题,若已经列出一个方程,则符合题意的另一个方程是( )
A. B. C. D.
7、已知方程组的解满足,则的值为( )
A.7 B. C.1 D.
8、图1是我国古代传说中的洛书,图2是洛书的数字表示.相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹.大禹依此治水成功,遂划天下为九州.又依此定九章大法,治理社会,流传下来收入《尚书》中,名《洪范》.《易·系辞上》说:“河出图,洛出书,圣人则之”.洛书是一个三阶幻方,就是将已知的9个数填入的方格中,使每一横行、每一竖列以及两条斜对角线上的数字之和都相等.图3是一个不完整的幻方,根据幻方的规则,由已知数求出 x的值应为( ).
A.-4 B.-3 C.3 D.4
9、用代入消元法解关于、的方程组时,代入正确的是( )
A. B.
C. D.
10、如图,在大长方形中不重叠的放入七个长、宽都相同的小长方形,根据图中给出的数据,可得出阴影部分面积为( )
A.48 B.52 C.58 D.64
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知关于x、y的二元一次方程组的解为,则a+b的值为 ___.
2、已知关于x,y的二元一次方程3mx-y=-1有一组解是,则m的值是 ___.
3、若,则________.
4、我国古代《孙子算经》记载“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是说:“每3人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘,问人和车的数量各是多少?”设共有x辆车,y人,则______,______.
5、方程,当a≠___时,它是二元一次方程,当a=____时,它是一元一次方程.
三、解答题(5小题,每小题10分,共计50分)
1、(1)用“>”“<”或“=”填空:_____ ;______;_____;______;归纳:若a、b异号时,______,若a、b同号或至少有一个为0时,____;
(2)根据上题中得出的结论,若,,求的值.
2、解方程组:
(1);
(2).
3、解方程组
4、代数式,当x=-2时,代数式的值为4;当x=2时,代数式的值为10,则x=-1时,求代数式的值.
5、已知关于x,y的二元一次方程组.
(1)当方程组的解为时,求a的值.
(2)当a=﹣2时,求方程组的解.
(3)小冉同学模仿第(1)问,提出一个新解法:将代入方程x+2y=a中,即可求出a的值.小冉提出的解法对吗?若对,请完成解答;若不对,请说明理由.
---------参考答案-----------
一、单选题
1、C
【分析】
设这对夫妇的年龄的和为x,子女现在的年龄和为y,这对夫妇共有z个子女;根据本题中的三个等量关系为:此夫妇现在的年龄和=6×其子女现在的年龄和;此夫妇两年前的年龄和=10×其子女两年前的年龄和;此夫妇6年后的年龄和=3×其子女6年后的年龄和.可列出方程组,解方程组即可.
【详解】
设现在这对夫妇的年龄和为x岁,子女现在的年龄和为y岁,这对夫妇共有z个子女,则,
解得
这对夫妇共有3个子女.
故选C.
【点睛】
本题考查了三元一次方程组的应用,根据题意列出方程组并解方程组是解题的关键.
2、A
【分析】
利用同类项定义列出方程组,求出方程组的解即可得到a与b的值.
【详解】
解:∵xa+2y3与﹣3x3y2b﹣a是同类项,
∴,
解得:
所以.
故选:A.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
3、B
【分析】
设学生人数为x,长凳数为y,然后根据若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳,列出方程即可.
【详解】
解:设学生人数为x,长凳数为y,
由题意得:,
故选B.
【点睛】
本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够准确理解题意.
4、D
【分析】
根据题目中的等量关系列出二元一次方程组即可.
【详解】
解:设一枚黄金的重量为x两,一枚白银的重量为y两,则可列方程组为
.
故选:D.
【点睛】
此题考查了列二元一次方程组,解题的关键是根据题意找到题目中的等量关系.
5、C
【分析】
根据加减消元法,由①+②得出11x=33,求出x,再把x=3代入①求出y即可.
【详解】
解:,
由①+②,得11x=33,
解得:x=3,
把x=3代入①,得9+2y=13,
解得:y=2,
所以方程组的解是,
故选:C.
【点睛】
本题考查了解二元一次方程组,解题的关键是掌握加减消元法解方程组.
6、B
【分析】
根据题意,可知设每人出x文,总共y文,再列另一个方程即可.
【详解】
∵,
∴设每人出x文,总共y文,
∴另一个方程为,
故选B.
【点睛】
本题考查了二元一次方程组,正确设未知数,灵活列方程是解题的关键.
7、D
【分析】
①+②得出x+y的值,代入x+y=1中即可求出k的值.
【详解】
解:
①+②得:3x+3y=4+k,
∴,
∵,
∴,
∴,
解得:,
故选:D
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.
8、A
【分析】
如图所示,其中a、b、c、d表示此方格中表示的数,则可得由此即可得到④,⑤,然后把④⑤代入③中即可求解.
【详解】
解:如图所示,其中a、b、c、d表示此方格中表示的数,
由题意得:,
由①得④,
由②得⑤,
把④和⑤代入③中得,
∴,
故选A.
【点睛】
本题主要考查了解方程组,解题得关键在于能够利用整体代入的思想进行求解.
9、A
【分析】
利用代入消元法把①代入②,即可求解.
【详解】
解:,
把①代入②,得:.
故选:A
【点睛】
本题主要考查了解二元一次方程组,解题的关键是熟练掌握二元一次方程组数为解法——代入消元法和加减消元法.
10、B
【分析】
设小长方形的宽为,长为,根据图形列出二元一次方程组求出、的值,再由大长方形的面积减去7个小长方形的面积即可.
【详解】
设小长方形的宽为,长为,
由图可得:,
得:,
把代入①得:,
大长方形的宽为:,
大长方形的面积为:,
7个小长方形的面积为:,
阴影部分的面积为:.
故选:B.
【点睛】
本题考查二元一次方程组,以及代数式求值,根据题意找出、的等量关系式是解题的关键.
二、填空题
1、
【解析】
【分析】
将代入中,求出的值,然后将的值代入求出的值,计算即可.
【详解】
解:∵关于x、y的二元一次方程组的解为,
∴将代入中得:,
解得:,即,
将、代入中得:
,
∴,
∴,
故答案为:.
【点睛】
本题考查了二元一次方程组的解,熟知二元一次方程组的解是能使方程组成立的未知数的值.
2、-1
【解析】
【分析】
把x与y的值代入方程计算即可求出m的值.
【详解】
解:把代入方程3mx-y=-1中得:3m+2=-1,
解得:m=-1.
故答案为:-1.
【点睛】
本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
3、-7
【解析】
【分析】
利用非负数的性质列出方程组,求出方程组的解得到x与y的值即可.
【详解】
解:∵,
∴,
解得:,
∴-2-5=-7,
故答案为:-7.
【点睛】
本题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解题的关键.
4、 15 39
【解析】
【分析】
设有x辆车,有y人,根据“每3人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘”列出方程组,解之即可.
【详解】
解:设有x辆车,有y人,
依题意得:,
解得,,
故答案为:15,39.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系是解此题的关键.
5、 ±1 或1
【解析】
【分析】
根据一元一次方程的定义可得分两种情况讨论,当,即时;当,即时,方程为一元一次方程,即可得的值;根据二元一次方程的定义可得且,解可得的值.
【详解】
解:关于的方程,是二元一次方程,
且,
解得:;
方程,是一元一次方程,分类讨论如下:
当,即时,方程为为一元一次方程;
当,即时,方程为为一元一次方程;
故答案是:±1;或1.
【点睛】
本题主要考查了二元一次方程和一元一次方程的定义,解题的关键是掌握一元一次方程的定义:只含有一个未知数(元,且未知数的次数是1,这样的方程叫一元一次方程.二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.
三、解答题
1、(1)>,=,=,=,>,=;(2)
【分析】
(1)分别计算各种情况的绝对值,再比较大小,再总结规律即可.
(2)由,,可得 可得异号,再分两种情况讨论即可.
【详解】
解:(1)
所以:>,
所以=,
所以=,
所以=,
归纳:若a、b异号时,>,
若a、b同号或至少有一个为0时,=;
(2) ,,
异号,
当
即
或
解得: 或
当
或
解得:或
故的值为:
【点睛】
本题考查的是绝对值的含义与化简,绝对值方程的应用,二元一次方程组的解法,正确的理解题意,利用总结出的规律解决问题是解本题的关键.
2、(1);(2).
【分析】
(1)利用代入消元法解二元一次方程组即可;
(2)首先整理方程,然后利用加减消元法解二元一次方程组即可.
【详解】
解:(1),
由①,可得:y=3x-7③,
③代入②,可得:x+3(3x-7)=-1,
解得:x=2,
把x=2代入③,解得:y=-1,
∴原方程组的解为.
(2)原方程可化为,
①×2-②,可得:3y=9,
解得:y=3,
把y=3代入①,解得:x=5,
∴原方程组的解为.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.
3、.
【分析】
将①×10,②×6,进而根据加减消元法解二元一次方程组即可
【详解】
解:①×10,②×6,得
③×3-④,得11y=33,解得y=3.
将y=3代入③,解得x=4.
所以原方程组的解为
【点睛】
本题考查了解二元一次方程,先将方程组中未知数的系数化为整数是解题的关键.
4、
【分析】
先根据代数式,当x=-2时,代数式的值为4,当x=2时,代数式的值为10,得到,解方程求出,由此求解即可.
【详解】
解:∵代数式,当x=-2时,代数式的值为4,当x=2时,代数式的值为10,
∴
解得,,
∴ 代数式为即为,
当x=-1代入,得.
【点睛】
本题主要考查了代数式求值和解二元一次方程组,解题的关键在于能够根据题意建立关于a、b的二元一次方程组求出a、b的值.
5、(1)3;(2);(3)小冉提出的解法不对,理由见解析
【分析】
(1)把代入中即可得解;
(2)当a=﹣2时,方程组变为,计算即可;
(3)根据判断得出不是方程组的解,计算即可;
【详解】
(1)将代入中得:;
(2)当a=﹣2时,方程组为,
得:,解得:,
∴,
∴方程组的解为;
(3)小冉提出的解法不对,
∵不是方程的解,
∴不是该方程组的解,则不一定是方程x+2y=a的解,因此不能代入求解;
【点睛】
本题主要考查二元一次方程组的解得应用,准确分析计算是解题的关键.
初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后练习题: 这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后练习题,共18页。试卷主要包含了若是关于x,如果x等内容,欢迎下载使用。
七年级下册第五章 二元一次方程组综合与测试练习题: 这是一份七年级下册第五章 二元一次方程组综合与测试练习题,共19页。试卷主要包含了若是关于x,下列方程是二元一次方程的是等内容,欢迎下载使用。
北京课改版七年级下册第五章 二元一次方程组综合与测试习题: 这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试习题,共23页。试卷主要包含了如果x,已知是二元一次方程,则的值为等内容,欢迎下载使用。