北京课改版七年级下册第五章 二元一次方程组综合与测试同步训练题
展开京改版七年级数学下册第五章二元一次方程组专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知是二元一次方程组的解,则m+n的值为( )
A. B.5 C. D.
2、已知是方程x﹣my=3的解,那么m的值为( )
A.2 B.﹣2 C.4 D.﹣4
3、已知是二元一次方程,则的值为( )
A. B.1 C. D.2
4、下列方程组中,不是二元一次方程组的是( ).
A. B. C. D.
5、二元一次方程的解可以是( )
A. B. C. D.
6、若是方程组的解,则的值为( )
A.16 B.-1 C.-16 D.1
7、已知关于x,y的二元一次方程组的解是,则a+b的值是( )
A.1 B.2 C.﹣1 D.0
8、为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知某加密规则为:明文,,,对应密文,,,.例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,解密得到的明文是( )
A.6,4,1,7 B.1,6,4,7 C.4,6,1,7 D.7,6,1,4
9、如图,在大长方形中不重叠的放入七个长、宽都相同的小长方形,根据图中给出的数据,可得出阴影部分面积为( )
A.48 B.52 C.58 D.64
10、关于的二元一次方程组的解满足,则k的值是( )
A.2 B. C. D.3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知方程组有无数多个解,则a、b的值等于________.
2、已知是二元一次方程组的解,则mn的相反数为______.
3、我国南宋数学家杨辉所著《田亩比类乘除捷法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为______________.
4、甲对乙说:“当我的岁数是你现在的岁数时,你才4岁.”乙对甲说:“当我的岁数是你现在的岁数时,你将61岁.”则甲、乙现在的年龄分别是______.
5、元旦期间,某商场开业,为了吸引更多的人流量,该商场决定举行迎宾抽奖活动.活动规则如下:只要在该商场消费一定的金额,消费者就可以凭借小票去抽奖中心兑换盲盒(盲盒的形状,大小,重量等各种属性完全相同),且盲盒里面分别装有50元、30元、10元、5元的奖金.开业当天商场准备了400个盲盒,且全部被消费者领完.经统计,开业当天上午领取的盲盒中所含奖金的总金额为950元,其中领取含有30元的盲盒的数量是含有10元的盲盒数量的一半,领取含50元的盲盒的数量多于1个,少于5个;下午领取的盲盒中所含奖金的总金额是1240元,下午领取含5元的盲盒的数量比上午领取含5元的盲盒的数量少10个,领取含10元的盲盒的数量是上午领取含10元的盲盒的数量的2倍,领取含30元的盲盒的数量比上午领取含30元的盲盒的数量多5个,含50元的盲盒只有1个被抽中,剩余的盲盒则全被晚上领取完毕,则晚上被领取的盲盒的数量是______.
三、解答题(5小题,每小题10分,共计50分)
1、如果知道了两个数的和与差,你一定能求出这两个数吗?说说你的理由.
2、已知:2x+3y=7,用关于y的代数式表示x,用关于x的代数式表示y.
3、某小区为了绿化环境,计划分两次购进A,B两种树苗,第一次购进A种树苗40棵,B种树苗15棵,共花费1750元;第二次购进A种树苗20棵,B种树苗6棵,共花费860元.(两次购进的A,B两种树苗各自的单价均不变)
(1)A,B两种树苗每棵的价格分别是多少元?
(2)因受季节影响,A种树苗价格下降10%,B种树苗价格上升20%,计划购进A种树苗25棵,B种树苗20棵,问总费用是多少元?
4、解方程(组)
(1)10+2(x﹣)=7(x﹣2);
(2);
(3).
5、解方程组:
(1)
(2)
---------参考答案-----------
一、单选题
1、B
【分析】
根据方程组解的定义,方程组的解适合方程组中的每个方程,转化为关于m、n的方程组即可解决问题.
【详解】
解:∵是二元一次方程组的解,
∴,
解得,
∴m+n=5.
故选:B.
【点睛】
本题考查二元一次方程组的解,理解方程组解的定义是解决问题的关键.
2、A
【分析】
直接将代入x﹣my=3中即可得出答案.
【详解】
解:∵是方程x﹣my=3的解,
∴,
解得:,
故选:A.
【点睛】
本题考查了二元一次方程的解,熟知二元一次方程的解即为能使二元一次方程成立的未知数的值.
3、C
【分析】
根据二元一次方程的定义,即含有两个未知数,且未知数的次数均为1,即可求解.
【详解】
解:∵是二元一次方程,
∴ ,且 ,
解得: .
故选:C
【点睛】
本题主要考查了二元一次方程的定义,解题的关键是熟练掌握含有两个未知数,且未知数的次数均为1.
4、B
【分析】
依据二元一次方程组的定义求解即可.
【详解】
利用二元一次方程组的定义一一进行判断,A和D符合二元一次方程组的定义;
方程组中,可以整理为所以C也符合;
B中含有三个未知数不符合二元一次方程组的定义.
故答案选B
【点睛】
本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.
5、A
【分析】
把各个选项答案带进去验证是否成立即可得出答案.
【详解】
解:A、代入中,方程左边 ,边等于右边,故此选项符合题意;
B、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;
C、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;
D、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;
故选A.
【点睛】
本题主要考查二元一次方程的解的定义,熟知定义是解题的关键:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一组解.
6、C
【分析】
把x与y的值代入方程组,求出a+b与a-b的值,代入原式计算即可求出值.
【详解】
解:把代入方程组得,
两式相加得;
两式相差得:,
∴,
故选C.
【点睛】
本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
7、B
【分析】
将代入即可求出a与b的值;
【详解】
解:将代入得:
,
∴a+b=2;
故选:B.
【点睛】
本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.
8、A
【分析】
根据第四个密文列方程4d=28,解一元一次方程求出d,再根据第三个密文,列二元一次方程把d代入,求出第三个明文c,根据第二个密文列二元一次方程,代入第三个明文c,求出第二个明文b,根据第一个密文列二元一次方程,代入第二个明文b,求出第一个明文a得到明文为a,b,c,d即可.
【详解】
解:设明文为a,b,c,d,
∵某加密规则为:明文,,,对应密文,,,.
根据密文14,9,23,28,
4d=28,
解得d=7,
=23,
把d=7代入=23得
解得
=9,
把代入=9得,
解得
a+2b=14,
把代入a+2b=14得a+2×4=14,
解得a=6,
则得到的明文为6,4,1,7.
故选:A.
【点睛】
此题考查了一元一次方程与二元一次方程的应用,弄清题意分步列出方程是解本题的关键.
9、B
【分析】
设小长方形的宽为,长为,根据图形列出二元一次方程组求出、的值,再由大长方形的面积减去7个小长方形的面积即可.
【详解】
设小长方形的宽为,长为,
由图可得:,
得:,
把代入①得:,
大长方形的宽为:,
大长方形的面积为:,
7个小长方形的面积为:,
阴影部分的面积为:.
故选:B.
【点睛】
本题考查二元一次方程组,以及代数式求值,根据题意找出、的等量关系式是解题的关键.
10、B
【分析】
解方程组,用含的式子表示,然后将方程组的解代入即可.
【详解】
解:,
①-②得:,
∵,
∴,
解得:,
故选:B.
【点睛】
本题考查了二元一次方程组解,和二元一次方程组的解的应用,运用整体法得出,可以是本题变得简便.
二、填空题
1、a=﹣3,b=﹣14##b=-14,a=-3
【解析】
【分析】
根据二元一次方程组有无数多个解的条件得出 ,由此求出a、b的值.
【详解】
解:∵方程组有无数多个解,
∴,
∴a=−3,b=−14.
故答案为:a=﹣3,b=﹣14.
【点睛】
本题考查了对二元一次方程组的应用,注意:方程组 中,当时,方程组有无数解.
2、-12
【解析】
【分析】
把代入方程组求出m,n即可;
【详解】
把代入中得:,
得:,
解得:,
把代入①中得:,
∴方程组的解是,
∴,
∴mn的相反数是;
故答案是:.
【点睛】
本题主要考查了二元一次方程组的求解,代数式求值,相反数的性质,准确计算是解题的关键.
3、x(x+12)=864
【解析】
【分析】
由矩形的宽及长与宽之间的关系可得出矩形的长为(x+12)步,再利用矩形的面积公式即可得出关于x的一元二次方程,此题得解.
【详解】
∵矩形的宽为x步,且宽比长少12步,
∴矩形的长为(x+12)步.
依题意,得:x(x+12)=864.
故答案为:x(x+12)=864.
【点睛】
本题考查了一元二次方程的实际应用,关键是理解题意,根据等量关系正确列出方程.
4、42岁,23岁
【解析】
【分析】
设甲现在x岁,乙现在y岁,根据甲、乙年龄之间的关系,可得出关于x,y的二元一次方程组,解之即可得出结论.
【详解】
解:设甲现在x岁,乙现在y岁,
依题意,得:,
解得:.
答:甲现在42岁,乙现在23岁.
故答案为:42岁,23岁.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
5、206个
【解析】
【分析】
设上午领取的含有5元的盲盒与含有10元的盲盒的数量分别为x个、y个,由下午领取的盲盒的总金额为1240元得,分三种情况:当上午领取的50元盲盒为2个时,3个时,4个时,分别解方程组求解即可.
【详解】
解:设上午领取的含有5元的盲盒与含有10元的盲盒的数量分别为x个、y个,其他盲盒领取的个数见表格,
| 上午领取的个数 | 下午领取的个数 |
50元盲盒 |
| 1 |
30元盲盒 | +5 | |
10元盲盒 | y | 2y |
5元盲盒 | x | x-10 |
由题意得,化简得,
∵上午领取含50元的盲盒的数量多于1个,少于5个,
∴当上午领取的50元盲盒为2个时,得,
化简得,
解方程组,得,
∴晚上领取的盲盒的个数为206个;
当上午领取的50元盲盒为3个时,得,
化简得,
解方程组,得,
此时为小数,故舍去;
当上午领取的50元盲盒为4个时,得,
化简得,
解方程组,得(舍去),
综上,晚上领取的盲盒的个数为206个,
故答案为:206个
【点睛】
此题考查二元一次方程组的实际应用,正确理解题意设未知数并列得方程组是解题的关键.
三、解答题
1、能,答案不唯一,理由见解析
【分析】
不妨设,利用加减消元法进行求解.
【详解】
解:(本题答案不唯一)假设这两个数分别为x和y,
不妨设,
联立:,
①②得:,
解得:,
将代入①中,
得,
解得:,
.
【点睛】
本题考查了求解二元一次方程组,解题的关键是掌握加减消元法.
2、,
【分析】
先移项,得到 ,然后等式两边同时除以2,即可求解.
【详解】
解:∵2x+3y=7,
∴ , ,
∴, .
【点睛】
本题主要考查了解二元一次方程,熟练掌握二元一次方程的解法是解题的关键.
3、(1)A种树苗每棵的价格40元,B种树苗每棵的价格10元;(2)总费用需1140元.
【分析】
(1)设A、B两种树苗每棵的价格分别是x元、y元,根据题意列二元一次方程组,解方程组求出x、y的值即可得答案;
(2)根据(1)所求得结果进行求解即可.
【详解】
解:(1)设A种树苗每棵的价格x元,B种树苗每棵的价格y元,
根据题意得:,
解得:,
答:A种树苗每棵的价格40元,B种树苗每棵的价格10元;
(2)=1140元。
答:总费用需1140元.
【点睛】
本题考查二元一次方程组的应用,正确理解题意列出方程求解是解题的关键.
4、(1)x=;(2)x=﹣4;(3).
【分析】
(1)方程去括号、移项、合并同类项、系数化为1即可;
(2)方程整理后,去分母、移项、合并同类项、系数化为1即可;
(3)利用加减消元法解答即可.
【详解】
解:(1)10+2(x﹣)=7(x﹣2),
去括号、得10+2x﹣1=7x﹣14,
移项、得2x﹣7x=1﹣10﹣14,
合并同类项、得﹣5x=﹣23,
系数化为1,得x=;
(2)﹣,
整理、得,
去分母、得17+20x﹣15x=﹣3,
移项、得20x﹣15x=﹣3﹣17,
合并同类项、得5x=﹣20,
系数化为1,得x=﹣4;
(3)方程组整理,得,
①+②,得6y=6,
解得y=1,
把y=1代入②,得x﹣2=1,
解得x=3,
故方程组的解为.
【点睛】
此题考查了解一元一次方程,解二元一次方程组,解题的关键是熟练掌握解一元一次方程和二元一次方程组的步骤.
5、(1);(2)
【分析】
(1)利用把两个方程相加先消去求解 再求解,从而可得方程组的解;
(2)把方程①乘以3,再与方程②相加消去 求解 再求解 从而可得答案.
【详解】
解:(1)
①+②得:
解得:
把代入①得:
解得:
所以方程组的解是
(2)
①得:
②+③得:
解得:
把代入①得:
所以原方程组是解是
【点睛】
本题考查的是利用加减消元法解二元一次方程组,掌握“加减法解二元一次方程组”是解本题的关键.
初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试习题: 这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试习题,共19页。试卷主要包含了二元一次方程的解可以是等内容,欢迎下载使用。
北京课改版七年级下册第五章 二元一次方程组综合与测试同步练习题: 这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试同步练习题,共19页。试卷主要包含了解方程组的最好方法是等内容,欢迎下载使用。
北京课改版七年级下册第五章 二元一次方程组综合与测试课堂检测: 这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试课堂检测,共17页。试卷主要包含了下列方程是二元一次方程的是,已知是二元一次方程,则的值为等内容,欢迎下载使用。