初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试练习
展开这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试练习,共18页。试卷主要包含了有铅笔,若是方程组的解,则的值为等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、用代入消元法解关于、的方程组时,代入正确的是( )
A. B.
C. D.
2、若xa﹣b﹣2ya+b﹣2=0是二元一次方程,则a,b的值分别是( )
A.1,0 B.0,﹣1 C.2,1 D.2,﹣3
3、若是关于x、y的二元一次方程ax-5y=1的解,则a的值为( )
A.-5 B.-1 C.9 D.11
4、《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系,其中卷八方程[七]中记载:“今有牛五,羊二,直金十两;牛二、羊五,直金八两,问牛、羊直金几何?”译文:“假设有5头牛,2只羊共值金10两;2头牛,5只羊共值金8两,问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,那么下面列出的方程组中正确的是( )
A. B. C. D.
5、如图,AB⊥BC,∠ABC的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°,y°,那么下面可以求出这两个角的度数的方程组是( ).
A. B. C. D.
6、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需( )
A.1.2元 B.1.05元 C.0.95元 D.0.9元
7、甲、乙两城相距1120千米,一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇.若快车平均每小时行驶的路程是动车平均每小时行驶的路程的一半还多5千米,则动车平均每小时比快车平均每小时多行驶的路程为( )
A.330千米 B.170千米 C.160千米 D.150千米
8、已知是二元一次方程的一组解,则m的值是( )
A. B.3 C. D.
9、若是方程组的解,则的值为( )
A.16 B.-1 C.-16 D.1
10、在一次爱心捐助活动中,八年级(1)班40名同学共捐款275元,已知同学们捐款的面额只有5元、10元两种,求捐5元和10元的同学各有多少名?若设捐5元的同学有x名,捐10元的有y名,则可列方程组为( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、小明从邮局买了面值0.5元和0.8元的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?若设买了面值0.5元的邮票x枚,0.8元的邮票y枚,则根据题意可列出方程组为__________.
2、有一片牧场,草每天都在匀速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,如果放牧16头牛,则__________天可以吃完牧草.
3、若是方程2x+y=10的解,求6a+3b﹣4的值是 ___.
4、已知方程组,则x+y的值是______.
5、近日天气晴朗,某集团公司准备组织全体员工外出踏青.决定租用甲、乙、丙三种型号的巴士出行(每辆车座位数不少于20),甲型巴士每辆车的乘载量是乙型巴士的2倍,丙型巴士每辆可乘坐40人.现在旅游公司有甲、乙、丙型巴士若干辆,预计该集团公司安排甲型、丙型巴士共计11辆,其余员工安排乙型巴士,每辆巴士均满载,这样乘坐乙型巴士和丙型巴士的员工共376人.临行前,突然有若干人因特殊原因请假,这样一来刚好可以减少租用一辆乙型巴士,且有辆乙型巴士多出5个空位,这样甲、乙两种型号巴士共计装载259人,则该集团公司共有 ___名员工.
三、解答题(5小题,每小题10分,共计50分)
1、解方程(组):
(1);
(2).
2、已知方程组的解也是关于、的二元一次方程的一组解,求的值.
3、千佛山、趵突泉、大明湖并称济南三大风景名胜区.为了激发学生个人潜能和团队精神,历下区某学校组织学生去千佛山开展为期一天的素质拓展活动.已知千佛山景区成人票每张30元,学生票按成人票五折优惠.某班教师加学生一共去了50人,门票共需810元.
(1)这个班参与活动的教师和学生各多少人?(应用二元一次方程组解决)
(2)某旅行网上成人票价格为28元,学生票价格为14元,若该班级全部网上购票,能省多少钱?
4、定义数对(x,y)经过一种运算φ可以得到数对(x',y'),并把该运算记作φ(x,y)=(x',y'),其中(a,b为常数).例如,当a=1,且b=1时,φ(﹣2,3)=(1,﹣5).
(1)当a=1且b=1时,φ(0,1)= ;
(2)若φ(1,2)=(0,4),则a= ,b= ;
(3)如果组成数对(x,y)的两个数x,y满足二元一次方程2x﹣y=0,并且对任意数对(x,y)经过运算φ又得到数对(x,y),求a和b的值.
5、解方程组:
---------参考答案-----------
一、单选题
1、A
【分析】
利用代入消元法把①代入②,即可求解.
【详解】
解:,
把①代入②,得:.
故选:A
【点睛】
本题主要考查了解二元一次方程组,解题的关键是熟练掌握二元一次方程组数为解法——代入消元法和加减消元法.
2、C
【分析】
根据二元一次方程的定义,可得到关于a,b的方程组,解出即可求解.
【详解】
解:∵xa﹣b﹣2ya+b﹣2=0是二元一次方程,
∴ ,
解得:.
故选:C
【点睛】
本题主要考查了二元一次方程的定义和解二元一次方程组,熟练掌握相关知识点是解题的关键.
3、D
【分析】
把代入ax-5y=1解方程即可求解.
【详解】
解:∵是关于x、y的二元一次方程ax-5y=1的解,
∴将代入ax-5y=1,
得:,解得:.
故选:D.
【点睛】
此题考查了二元一次方程解的含义,解题的关键是熟练掌握二元一次方程解的含义.
4、A
【分析】
根据题意可直接进行求解.
【详解】
解:设每头牛值金x两,每只羊值金y两,由题意得:;
故选A.
【点睛】
本题主要考查二元一次方程组的应用,熟练掌握二元一次方程的应用是解题的关键.
5、A
【分析】
此题中的等量关系有:, ,根据等量关系列出方程即可.
【详解】
设∠ABD和∠DBC的度数分别为x°,y°,则有
整理得:,
故选:A.
【点睛】
本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.
6、B
【分析】
设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,根据“购铅笔3支,练习本7本,圆珠笔1支共需3.15元;购铅笔4支,练习本8本,圆珠笔2支共需4.2元”建立三元一次方程组,然后将两个方程联立,即可求得的值.
【详解】
设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,
根据题意得:,
②–①可得:.
故选:B.
【点睛】
本题考查三元一次方程组的实际应用,解题关键是根据两个等量关系列出方程组,而利用整体思想,把所给两个等式整理为只含的等式.
7、C
【分析】
设动车平均每小时行驶x千米,快车平均每小时行驶y千米,根据“一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇,且快车平均每小时行驶的路程比动车平均每小时行驶的路程的一半还多5千米”,即可得出关于x,y的二元一次方程组,求出动车与快车平均每小时行驶的路程即可解答.
【详解】
解:设动车平均每小时行驶x千米,快车平均每小时行驶y千米,
依题意得: ,
解得: ,
,
故选:C.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
8、A
【分析】
把代入5x+3y=1即可求出m的值.
【详解】
把代入5x+3y=1,得
10+3m=1,
∴m=-3,
故选A.
【点睛】
本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.
9、C
【分析】
把x与y的值代入方程组,求出a+b与a-b的值,代入原式计算即可求出值.
【详解】
解:把代入方程组得,
两式相加得;
两式相差得:,
∴,
故选C.
【点睛】
本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
10、C
【分析】
根据题意,x+y=40,5x+10y=275,判断即可.
【详解】
根据题意,得x+y=40,5x+10y=275,
∴符合题意的方程组为,
故选C.
【点睛】
本题考查了二元一次方程组的应用,准确找到符合题意的等量关系是解题的关键.
二、填空题
1、
【解析】
【分析】
由题意可得等量关系①0.5元的邮票枚数+面值0.8元的邮票枚数=9枚;②0.5元的邮票价格+面值0.8元的邮票总价格=6.3元,由等量关系列出方程组即可.
【详解】
解:设买了面值0.5元的邮票x枚,0.8元的邮票y枚,由题意得
,
故答案为:.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是找到题目中的等量关系,列出方程组.
2、18
【解析】
【分析】
设每头牛每天吃草x千克,牧场的草每天生长y千克,如果放牧16头牛,则m天可以吃完牧草,根据牧草原有牧草数不变,可得出关于x,y,m的方程组,解方程组即可.
【详解】
解:设每头牛每天吃草x千克,牧场的草每天生长y千克,如果放牧16头牛,则m天可以吃完牧草,
依题意,得:,
由①可得出:y=12x③,
将③代入②中,得:16mx﹣12mx=24×6x﹣6×12x,
解得:m=18.
故答案为:18.
【点睛】
本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.
3、26
【解析】
【分析】
先代入求出2a+b=10,再变形,最后代入求出即可.
【详解】
解:∵是方程2x+y=10的解,
∴2a+b=10,
∴6a+3b−4
=3(2a+b)−4
=3×10−4
=26.
故答案为:26.
【点睛】
本题考查了二元一次方程的解和求代数式的值的应用,用了整体代入思想.
4、
【解析】
【分析】
利用加减消元法求出二元一次方程组的解,然后进行代数式求值即可得到答案.
【详解】
解:
把② ×2-①得:,解得
把代入① 中解得
∴.
故答案为:.
【点睛】
本题主要考查了利用加减消元法解二元一次方程组,代数式求值,解题的关键在于能够熟练掌握加减消元法.
5、568
【解析】
【分析】
设甲型巴士a辆,乙型巴士b辆,丙型巴士(11−a)辆,乙型巴士乘载量为x人,由题意列出方程,由整数解的思想可求解.
【详解】
解:设甲型巴士a辆,乙型巴士b辆,丙型巴士(11−a)辆,乙型巴士乘载量为x人,
由题意可得:
,
解得:x=,
∵1≤a≤10,且a为整数,
∴,
∴b=4,
∴总人数=4×48+4×24+40×7=568(人),
故答案为:568.
【点睛】
本题考查了三元一次方程组的应用,利用整数解的思想解决问题是本题的关键.
三、解答题
1、(1)x=;(2)
【分析】
(1)方程去分母,去括号,移项,合并同类项,系数化为1即可;
(2)方程组利用加减消元法求解即可.
【详解】
解:(1),
去分母,得2(2x﹣1)+(x﹣2)=4,
去括号,得4x-2+x﹣2=4,
移项,得4x+x=4+2+2,
合并同类项,得5x=8,
系数化为1,得x=;
(2),
①×2+②,得,
解得x=2,
把x=2代入②,得8﹣2y=10,
解得x=﹣1,
故方程组的解为.
【点睛】
此题主要考查一元一次方程与二元一次方程组的求解,解题的关键是熟知其解法的运用.
2、.
【分析】
利用加减消元法求出方程组的解得到x与y的值,代入方程计算即可求出a的值.
【详解】
解:方程组,
②+①得:,
解得:,代入①中,
解得:,
把,代入方程得,,
解得:.
【点睛】
此题考查了加减消元法解二元一次方程组,以及二元一次方程的解,解一元一次方程,方程组的解即为能使方程组中两方程成立的未知数的值.
3、(1)教师4人,学生46人;(2)54元
【分析】
(1)根据班教师加学生一共去了50人,门票共需810元,列出两个等式,求解即可;
(2)门店的门票费减去网购的门票费就等于节省的钱.
【详解】
解:设这个班参与活动的教师有x人,学生有y人,
∵千佛山景区成人票每张30元,学生票按成人票五折优惠,由题意得:
解得:
答:这个班参与活动的教师有4人,学生有46人.
(2)由(1)求得这个班参与活动的教师有4人,学生有46人.
∴网购的总费用为:28×4+14×46=756(元)
∴节省了:810-756=54(元).
答:该班级全部网上购票,能省54元.
【点睛】
本题考查了二元一次方程组的应用,读懂题意找出等量关系,列出等式并解出二元一次方程组是解题的一般思路.
4、(1)(1,﹣1);(2)2,﹣1;(3)
【分析】
(1)当a=1且b=1时,分别求出x′和y′即可得出答案;
(2)根据条件列出方程组即可求出a,b的值;
(3)根据对任意数对(x,y)经过运算φ又得到数对(x,y),得到,根据2x-y=0,得到y=2x,代入方程组即可得到答案.
【详解】
解:(1)当a=1且b=1时,
x′=1×0+1×1=1,
y′=1×0﹣1×1=﹣1,
故答案为:(1,﹣1);
(2)根据题意得:
,
解得:,
故答案为:2,﹣1;
(3)∵对任意数对(x,y)经过运算φ又得到数对(x,y),
∴,
∵2x﹣y=0,
∴y=2x,
代入方程组解得:
,
∴,
解得.
【点睛】
本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.
5、
【分析】
利用代入法求解.
【详解】
解:,
由②得y=2x-14③,
将③代入①,得3x+2(2x-14)=21,
解得x=7,
将x=7代入③,得y=0,
∴方程组的解为.
【点睛】
此题考查了解二元一次方程组,掌握解二元一次方程组的解法:代入法和加减法,能根据每个方程的特点选择恰当的解法是解题的关键.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试达标测试,共20页。试卷主要包含了如图,9个大小等内容,欢迎下载使用。
这是一份初中北京课改版第五章 二元一次方程组综合与测试巩固练习,共22页。试卷主要包含了若方程组的解为,则方程组的解为,如图,9个大小,已知是二元一次方程,则的值为等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后练习题,共20页。试卷主要包含了下列各式中是二元一次方程的是等内容,欢迎下载使用。