![2021-2022学年京改版七年级数学下册第五章二元一次方程组章节测评试题(名师精选)第1页](http://img-preview.51jiaoxi.com/2/3/12698616/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年京改版七年级数学下册第五章二元一次方程组章节测评试题(名师精选)第2页](http://img-preview.51jiaoxi.com/2/3/12698616/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年京改版七年级数学下册第五章二元一次方程组章节测评试题(名师精选)第3页](http://img-preview.51jiaoxi.com/2/3/12698616/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中第五章 二元一次方程组综合与测试达标测试
展开
这是一份初中第五章 二元一次方程组综合与测试达标测试,共21页。试卷主要包含了下列是二元一次方程的是,已知是方程的解,则k的值为等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组数中,是二元一次方程组的解的是( )A. B. C. D.2、如图,已知长方形中,,,点E为AD的中点,若点P在线段AB上以的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若与全等,则点Q的运动速度是( )A.6或 B.2或6 C.2或 D.2或3、用加减消元法解二元一次方程组时,下列方法中无法消元的是( )A. B. C. D.4、我们在解二元一次方程组时,可将第二个方程代入第一个方程消去得从而求解,这种解法体现的数学思想是( )A.转化思想 B.分类讨论思想 C.数形结合思想 D.公理化思想5、下列是二元一次方程的是( )A.3x﹣6=x B.3x=2y C.x﹣=0 D.2x﹣3y=xy6、已知方程,,有公共解,则的值为( ).A.3 B.4 C.0 D.-17、已知是方程的解,则k的值为( )A.﹣2 B.2 C.4 D.﹣48、下列是二元一次方程的是( )A. B. C. D.9、某污水处理厂库池里现有待处理的污水m吨.另有从城区流入库池的待处理污水(新流入污水按每小时n吨的定流量增加).若该厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组,需15小时处理完污水.若5小时处理完污水,则需同时开动的机组数为( )A.6台 B.7台 C.8台 D.9台10、根据大马和小马的对话求大马和小马各驮了几包货物.大马说:“把我驮的东西给你1包多好哇!这样咱俩驮的包数就一样多了.”小马说:“我还想给你1包呢!”大马说:“那可不行!如果你给我1包,我驮的包数就是你的2倍了.”小明将这个实际问题转化为二元一次方程组问题.设未知数x,y,已经列出一个方程x﹣1=y+1,则另一个方程应是( )A.x+1=2y B.x+1=2(y﹣1)C.x﹣1=2(y﹣1) D.y=1﹣2x第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若,则________.2、近日天气晴朗,某集团公司准备组织全体员工外出踏青.决定租用甲、乙、丙三种型号的巴士出行(每辆车座位数不少于20),甲型巴士每辆车的乘载量是乙型巴士的2倍,丙型巴士每辆可乘坐40人.现在旅游公司有甲、乙、丙型巴士若干辆,预计该集团公司安排甲型、丙型巴士共计11辆,其余员工安排乙型巴士,每辆巴士均满载,这样乘坐乙型巴士和丙型巴士的员工共376人.临行前,突然有若干人因特殊原因请假,这样一来刚好可以减少租用一辆乙型巴士,且有辆乙型巴士多出5个空位,这样甲、乙两种型号巴士共计装载259人,则该集团公司共有 ___名员工.3、《九章算术》记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两,问一牛一羊共直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问一头牛和一只羊共值金多少两?”根据题意可得,一头牛和一只羊共值金 ____两.4、若x,y满足方程组,则化数式的值为 _____.5、某个“卡通玩具”自动售货机出售A、B、C三种玩具,A、B、C三种玩具的单价分别是3元/个、5元/个,6元/个,工作日期间,每天上货量是固定的,且能全部售出,其中,A玩具的数量(单位:个)是B玩具数量的2倍,B玩具的数量(单位:个)是C玩具数量的2倍.某个周六,A、B、C三种玩具的上货量分别比一个工作日的上货量增加了50%,70%、50%,且全部售出.但是由于软件出错,发生了一起错单(即消费者按某种玩具一个的价格投币,但是取得了另一种玩具1个),结果这个周六的销售收入比一个工作日的销售收入多了958元,则这个“卡通玩具”自动售货机一个工作日的销售收入是____元.三、解答题(5小题,每小题10分,共计50分)1、解方程组:2、我校为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜4个,共需资金1500元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若我校计划购进这两种规格的书柜共30个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金6420元,请设计所有可行的购买方案供学校选择.3、计算下列各题: (1) (2)解方程组:.(3)解不等式组:,并把解集在数轴上表示出来.4、疫情期间,某物业公司欲购进A、B两种型号的防护服,若购入A种防护服30套,B种防护服50套,需6600元,若购入A种防护服40套,B种防护服10套,需3700元.(1)求购进A、B两种防护服的单价分别是多少元?(2)若该公司准备用不多于12300元的金额购进这两种防护服共150套,求A种防护服至少要购进多少套?5、解方程组:(1)(2) ---------参考答案-----------一、单选题1、B【分析】由题意直接利用加减消元法求出二元一次方程组的解即可得出答案.【详解】解:,得③,得④,③+④得,解得,将代入②得,解得,所以是二元一次方程组的解.故选:B.【点睛】本题考查解二元一次方程组,注意消元思想的运用,消元的方法有:代入消元法与加减消元法.2、A【分析】设Q运动的速度为x cm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.【详解】解:∵ABCD是长方形,∴∠A=∠B=90°,∵点E为AD的中点,AD=8cm,∴AE=4cm,设点Q的运动速度为x cm/s,①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,,解得,,即点Q的运动速度cm/s时能使两三角形全等.②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,,解得:,即点Q的运动速度6cm/s时能使两三角形全等.综上所述,点Q的运动速度或6cm/s时能使两三角形全等.故选:A.【点睛】本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.3、D【分析】利用加减消元法逐项判断即可.【详解】A. ,可以消去x,不符合题意;B. ,可以消去y,不符合题意;C. ,可以消去x,不符合题意;D. ,无法消元,符合题意;故选:D【点睛】本题考查了加减消元法,解题关键是明确加减消元的方法,把相同未知数的系数变成相同或互为相反数,然后准确进行判断.4、A【分析】通过代入消元法消去未知数x,将二元一次方程转化为一元一次方程.【详解】解:在解二元一次方程组时,将第一个方程代入第二个方程消去x得22y+y=10,即4y+y=10,从而将二元一次方程降次转化为一元一次方程求解,这种解法体现的数学思想是:转化思想,故选:A.【点睛】本题考查了解二元一次方程组,理解消元法(加减消元法和代入消元法)解二元一次方程组的方法是解题关键.5、B【分析】根据二元一次方程的定义逐项判断即可得.【详解】A、是一元一次方程,此项不符合题意;B、是二元一次方程,此项符合题意;C、是分式方程,此项不符合题意;D、是二元二次方程,此项不符合题意;故选:B.【点睛】本题考查了二元一次方程的定义:含有2个未知数,未知数的项的次数是1的整式方程是二元一次方程.注意分母中有字母的情况是不符合二元一次方程定义的.6、B【分析】联立,,可得:,,将其代入,得值.【详解】 ,解得,把代入中得:,解得:.故选:B.【点睛】本题考查二元一次方程组,掌握公共解是三个方程都满足的解是解题的关键.7、C【分析】把代入是方程kx+2y=﹣2得到关于k的方程求解即可.【详解】解:把代入方程得:﹣2k+6=﹣2,解得:k=4,故选C.【点睛】本题主要考查二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.有解必代是解决此类题目的基本思路.8、B【分析】由二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程,解答即可.【详解】解:A、不是二元一次方程,只含有一个未知数,不符合题意;B、是二元一次方程,符合题意;C、不是二元一次方程,未知项的次数为2,不符合题意;D、不是二元一次方程,未知项的次数为2,不符合题意;故选B【点睛】本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程,掌握二元一次方程的概念是解题的关键.9、B【分析】设同时开动x台机组,每台机组每小时处理a吨污水,根据“如果同时开动2台机组要30小时刚好处理完污水,同时开动3台机组要15小时刚好处理完污水”,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值(用含a的代数式表示),再由5小时内将污水处理完毕,即可得出关于关于x的一元一次方程,解之可得出结论.【详解】解:设同时开动x台机组,每台机组每小时处理a吨污水,依题意,得,解得:,∵5ax=30a+5a,∴x=7.答:要同时开动7台机组.故选:B.【点睛】本题考查的是用二元一次方程组来解决实际问题,正确的理解题意是解题的关键.10、B【分析】设大马驮x袋,小马驮y袋.本题中的等量关系是:2×(小马驮的﹣1袋)=大马驮的+1袋;大马驮的﹣1袋=小马驮的+1袋,据此可列方程组求解.【详解】解:设大马驮x袋,小马驮y袋.根据题意,得.故选:B.【点睛】此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.二、填空题1、-7【解析】【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值即可.【详解】解:∵,∴,解得:,∴-2-5=-7,故答案为:-7.【点睛】本题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解题的关键.2、568【解析】【分析】设甲型巴士a辆,乙型巴士b辆,丙型巴士(11−a)辆,乙型巴士乘载量为x人,由题意列出方程,由整数解的思想可求解.【详解】解:设甲型巴士a辆,乙型巴士b辆,丙型巴士(11−a)辆,乙型巴士乘载量为x人,由题意可得:,解得:x=,∵1≤a≤10,且a为整数,∴,∴b=4,∴总人数=4×48+4×24+40×7=568(人),故答案为:568.【点睛】本题考查了三元一次方程组的应用,利用整数解的思想解决问题是本题的关键.3、##【解析】【分析】根据“5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到两个等量关系,即可列出方程组.【详解】解:设1头牛值金x两,1只羊值金y两,由题意可得,,上述两式相加可得,x+y=.故答案为:.【点睛】此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.4、0【解析】【分析】二元一次方程组两式相加得x+y=2,两式相减得x-y=4,将结果代入=0.【详解】∵令有∴令有∴将,代入得.故答案为:0.【点睛】本题考查了已知式子的值解代数式值和解二元一次方程组,通过加减消元法化简二元一次方程组,得出所求代数式中含有的部分,再代入计算即可.5、1680【解析】【分析】设C玩具数量工作日时有x个,表示出A、B两种玩具数量工作日数量为4x个、2x个,A、B、C三种玩具周六数量分别为:6x(个),3.4x(个),1.5x(个),继而得出工作日销售收入和周六销售收入及不发生任何故障时多出的钱数,而由于发生故障,周六销售额变化,据此设变化了y元,得16x+y=958,其中x为整数,进而求得工作日销售收入,即可求得y的值.【详解】解:设C玩具数量工作日时有x个,根据题意,得A、B两种玩具数量工作日时4x个、2x个,A、B、C三种玩具周六数量分别为:4x(1+50%)=6x(个),2x(1+70%)=3.4x(个),x(1+50%)=1.5x(个),∴工作日销售收入:3×4x+5×2x+6x=28x(元),周六销售收入:3×6x+5×3.4x+6×1.5x=44x(元),当不发生任何故障时,多出44x-28x=16x(元),其中x为整数,由于发生了故障,周六的销售额发生了变化,设变化了y元,则16x+y=958,其中x为整数,y=1、2、3、-1、-2、-3,当y=-2时,x=60,所以工作日销售收入为:28×60=1680(元).故答案为:1680.【点睛】本题考查了一元一次方程的应用以及二元一次方程的应用,解决本题的关键是根据题意设未知数找到等量关系.三、解答题1、【分析】直接利用加减消元法解二元一次方程组即可.【详解】解:用①-②得:,把代入②中得:,解得,∴方程组的解为:.【点睛】本题主要考查了解二元一次方程组,熟练掌握加减消元法是解题的关键.2、(1)甲、乙两种书柜每个的价格分别为元,元;(2)第一种方案:购进甲种书柜13个,乙种书柜17个,第二种方案:购进甲种书柜14个,乙种书柜16个,第三种方案:购进甲种书柜15个,乙种书柜15个.【分析】(1)设甲、乙两种书柜每个的价格分别为元,元,再根据甲种书柜3个、乙种书柜4个,共需资金1500元;甲种书柜4个,乙种书柜3个,共需资金1440元,列方程组,再解方程组即可得到答案;(2)设计划购进甲种书柜个,则购进乙种书柜个,根据乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金6420元,列不等式组,再解不等式组结合为正整数,从而可得答案.【详解】解:(1)设甲、乙两种书柜每个的价格分别为元,元,则 解得: 答:甲、乙两种书柜每个的价格分别为元,元.(2)设计划购进甲种书柜个,则购进乙种书柜个,则 由①得: 由②得:,所以: 又因为为正整数,或或 所以所有可行的购买方案为:第一种方案:购进甲种书柜13个,乙种书柜17个,第二种方案:购进甲种书柜14个,乙种书柜16个,第三种方案:购进甲种书柜15个,乙种书柜15个.【点睛】本题考查的是二元一次方程组的应用,一元一次不等式组的应用,设出合适的未知数,确定相等关系列方程组,确定不等关系列不等式组是解本题的关键.3、(1)-4;(2);(3), 把解集在数轴上表示见解析.【分析】(1)根据实数的运算法则进行运算,即可得出结论;(2)原方程组运用加减消元法求解即可得出结论;(3)分别解不等式①②,取其解集的并集,由此即可得出不等式组的解集,再将其表示在数轴上即可.【详解】解:(1)= ===-4 (2)解:,①②,得,解得:,把代入①,得,解得:,所以方程组的解是 (3)解:,由①得到,,解得,, 由②得到,, 解得,,, 在数轴上表示如下:.【点睛】本题考查了实数的运算、解一元一次不等式组、解二元一次方程组以及在数轴上表示不等式的解集,解题的关键是:(1)根据实数的运算法则进行运算;(2)熟练掌握方程组的解法;(3)熟练掌握不等式组的解法.本题属于基础题,难度不大,解决该题型题目时,熟练掌握不等式(不等式组以及方程组)的解法是关键.4、(1)购进A、B两种防护服的单价分别是70元、90元;(2)A种防护服至少要购进60套【分析】(1)根据题意可以列出相应的二元一次方程组,然后求解即可;(2)根据题意可以列出相应的不等式,然后求解即可.【详解】解:(1)设购进A、B两种防护服的单价分别是a元、b元,由题意可得: ,解得:,答:购进A、B两种防护服的单价分别是70元、90元;(2)设购进A种防护服x套,则购进B种防护服(150﹣x)套,由题意可得70x+90(150﹣x)≤12300,即: 解得:x≥60,答:A种防护服至少要购进60套.【点睛】本题考查二元一次方程组的实际应用,以及一元一次不等式的应用,能够列出相关的方程组或不等关系是解题的重点.5、(1);(2)【分析】(1)利用代入消元法解二元一次方程组;(2)利用加减消元法解二元一次方程组.【详解】解:(1),把②代入①可得:10y-y=-9,解得:y=-1,把y=-1代入②可得:x=-5,∴方程组的解为;(2),②+①,可得:9x=45,解得:x=5,把x=5代入①,可得:4×5-3y=14,解得:y=2,∴方程组的解为.【点睛】本题考查了解二元一次方程组,掌握消元法(加减消元法和代入消元法)解二元一次方程组的步骤是解题关键.
相关试卷
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试当堂达标检测题,共19页。试卷主要包含了二元一次方程组的解是,若是方程组的解,则的值为,下列各式中是二元一次方程的是等内容,欢迎下载使用。
这是一份2021学年第五章 二元一次方程组综合与测试课堂检测,共21页。试卷主要包含了已知方程组中,x,若方程组的解为,则方程组的解为等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试习题,共19页。试卷主要包含了二元一次方程组的解是,已知方程组的解满足,则的值为等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)