![2022年京改版七年级数学下册第五章二元一次方程组专项测试练习题(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12698596/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年京改版七年级数学下册第五章二元一次方程组专项测试练习题(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12698596/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年京改版七年级数学下册第五章二元一次方程组专项测试练习题(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12698596/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版七年级下册第五章 二元一次方程组综合与测试巩固练习
展开
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试巩固练习,共20页。试卷主要包含了若是方程组的解,则的值为,解方程组的最好方法是等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知是方程x﹣my=3的解,那么m的值为( )A.2 B.﹣2 C.4 D.﹣42、如图,在大长方形中不重叠的放入七个长、宽都相同的小长方形,根据图中给出的数据,可得出阴影部分面积为( )A.48 B.52 C.58 D.643、某校九年级学生到礼堂开会,若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳.若设学生人数为,长凳数为,由题意列方程组为( )A. B.C. D.4、下列各组数值是二元一次方程2x﹣y=5的解是( )A. B. C. D.5、某宾馆准备正好用200元购买价格分别为50元和25元的两种换气扇(两种都要买),则可供宾馆选择的方案有( )A.3种 B.4种 C.5种 D.6种6、为迎接2022年北京冬奧会,某班开展了以迎冬奥为主题的体育活动,计划拿出200元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件25元,乙种奖品每件10元,则购买方案有( )A.2种 B.3种 C.4种 D.5种7、若是方程组的解,则的值为( )A.16 B.-1 C.-16 D.18、解方程组的最好方法是( )A.由①得再代入② B.由②得再代入①C.由①得再代入② D.由②得再代入①9、某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是( )A.95元,180元 B.155元,200元 C.100元,120元 D.150元,125元10、已知关于x、y的方程组的解满足2x﹣y=2k,则k的值为( )A.k B.k C.k D.k第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x、y的方程是二元一次方程,则m=_______.2、小明从邮局买了面值0.5元和0.8元的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?若设买了面值0.5元的邮票x枚,0.8元的邮票y枚,则根据题意可列出方程组为__________.3、已知,则________.4、如图,把8个大小相同的长方形(如图1)放入一个较大的长方形中(如图2),则ab的值为_____.5、某学校八年级举行了二元一次方程组速算比赛,并按学生的得分高低对前100名进行表彰奖励,原计划一等奖表彰10人,二等奖表彰30人,三等奖表彰60人,经协商后调整为一等奖表彰20人,二等奖表彰40人,三等奖表彰40人,调整后一等奖平均分降低4.5分,二等奖平均分降低2.5分,三等奖平均分降低0.5分,若调整前一等奖平均分比二等奖平均分高0.8分,则调整后二等奖平均分比三等奖平均分高_________分.三、解答题(5小题,每小题10分,共计50分)1、解方程组:(1); (2).2、解下列方程组:(1);(2).3、我校为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜4个,共需资金1500元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若我校计划购进这两种规格的书柜共30个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金6420元,请设计所有可行的购买方案供学校选择.4、解下列方程组:(1) (2)5、阅读下列解方程组的方法,然后回答问题.解方程组解:由①-②得即③,③×16得④②-④得,把代入③得解得:原方程组的解是请你仿照上面的解法解方程组. ---------参考答案-----------一、单选题1、A【分析】直接将代入x﹣my=3中即可得出答案.【详解】解:∵是方程x﹣my=3的解,∴,解得:,故选:A.【点睛】本题考查了二元一次方程的解,熟知二元一次方程的解即为能使二元一次方程成立的未知数的值.2、B【分析】设小长方形的宽为,长为,根据图形列出二元一次方程组求出、的值,再由大长方形的面积减去7个小长方形的面积即可.【详解】设小长方形的宽为,长为,由图可得:,得:,把代入①得:,大长方形的宽为:,大长方形的面积为:,7个小长方形的面积为:,阴影部分的面积为:.故选:B.【点睛】本题考查二元一次方程组,以及代数式求值,根据题意找出、的等量关系式是解题的关键.3、B【分析】设学生人数为x,长凳数为y,然后根据若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳,列出方程即可.【详解】解:设学生人数为x,长凳数为y,由题意得:,故选B.【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够准确理解题意.4、D【分析】将选项中的解分别代入方程2x﹣y=5,使方程成立的即为所求.【详解】解:A. 把代入方程2x﹣y=5,-4-1=-5≠5,不满足题意;B. 把代入方程2x﹣y=5,0-5=-5≠5,不满足题意;C. 把代入方程2x﹣y=5,2-5=-3≠5,不满足题意;D. 把代入方程2x﹣y=5,6-1=5,满足题意;故选:D.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.能正确掌握方程的解得概念是解答此题的关键.5、A【分析】设购买50元和25元的两种换气扇的数量分别为x,y,然后根据用200元购买价格分别为50元和25元的两种换气扇,列出方程求解即可.【详解】解:设购买50元和25元的两种换气扇的数量分别为x,y由题意得:,即,∵x、y都是正整数,∴当x=1时,y=6,当x=2时,y=4,当x=3时,y=2,∴一共有3种方案,故选A.【点睛】本题主要考查了二元一次方程的应用,解题的关键在于能够准确理解题意,列出方程求解.6、B【分析】设购买甲种奖品为x件,乙种奖品为y件,由题意可得,进而求解即可.【详解】解:设购买甲种奖品为x件,乙种奖品为y件,由题意可得:,∴,∵,且x、y都为正整数,∴当时,则;当时,则;当时,则;当时,则(不合题意舍去);∴购买方案有3种;故选B.【点睛】本题主要考查二元一次方程的应用,正确理解题意、掌握二元一次方程整数解求解的方法是解题的关键.7、C【分析】把x与y的值代入方程组,求出a+b与a-b的值,代入原式计算即可求出值.【详解】解:把代入方程组得,两式相加得;两式相差得:,∴,故选C.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.8、C【分析】观察两方程中系数关系,即可得到最好的解法.【详解】解:解方程组的最好方法是由①得,再代入②.故选:C.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9、B【分析】设每件商品标价x元,进价y元,则根据题意表示出销售8件和销售12件的利润,进而得出等式,求出方程组的解即可.【详解】解:设每件商品标价x元,进价y元则根据题意得:,解得:,答:该商品每件进价155元,标价每件200元.故选:B.【点睛】本题考查了二元一次方程的应用,找出正确等量关系是解题关键.10、A【分析】根据得出,,然后代入中即可求解.【详解】解:,①+②得,∴③,①﹣③得:,②﹣③得:,∵,∴,解得:.故选:A.【点睛】本题考查了解三元一次方程组,根据题意得出的代数式是解题的关键.二、填空题1、1【解析】【分析】根据二元一次方程定义可得:|m|=1,且m-1≠0,进而可得答案.【详解】∵关于x、y的方程是二元一次方程,∴|m|=1,且m-1≠0,解得:m=1,故答案为:1【点睛】本题考查了二元一次方程,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.2、【解析】【分析】由题意可得等量关系①0.5元的邮票枚数+面值0.8元的邮票枚数=9枚;②0.5元的邮票价格+面值0.8元的邮票总价格=6.3元,由等量关系列出方程组即可.【详解】解:设买了面值0.5元的邮票x枚,0.8元的邮票y枚,由题意得,故答案为:.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是找到题目中的等量关系,列出方程组.3、-10【解析】【分析】根据题目已知条件可得:,,,把变形为代值即可得出答案.【详解】, ,即,,故答案为:-10.【点睛】本题考查三元一次方程组,解题关键是根据题意得到已知与待求式之间的关系.4、16【解析】【分析】根据图1和图2分析可得,,即可的值,进而可得的值【详解】由图1可得长方形的长为,宽为,根据图2可知大长方形的宽可以表示为解得故答案为:【点睛】本题考查了二元一次方程组,根据图中信息求得的值是解题的关键.5、8.9【解析】【分析】先设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,根据总分不变列出方程,再根据调整前一等奖平均分比二等奖平均分高0.8分列出方程,由此可求得调整后二等奖平均分比三等奖平均分高多少即可.【详解】解:设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,∵总分不变,∴10x+30y+60z=20(x﹣4.5)+40(y﹣2.5)+40(z﹣0.5),整理可得:x+y﹣2z=21①,∵调整前一等奖平均分比二等奖平均分高0.8分,∴x﹣y=0.8②,由②得:x=y+0.8③,将③代入①得:y+0.8+y﹣2z=21,∴2y﹣2z=21.8,∴y﹣z=10.9,∴(y﹣2.5)﹣(z﹣0.5)=y﹣2.5﹣z+0.5=y﹣z﹣2=10.9﹣2=8.9,故答案为:8.9.【点睛】此题主要考查了三元一次方程组的应用,关键是读懂题意,找出之间的数量关系,列出方程,再利用消元思想求解.三、解答题1、(1);(2)【分析】(1)利用代入消元法解二元一次方程组即可;(2)先整理原方程得然后把和当做一个整体利用加减消元法求出,,然后利用加减消元法求解即可.【详解】解:(1),把②代入①中得:,解得,把代入②中得,,∴方程组的解集为;(2)整理得:,用①-②得:,解得,把③代入①得:,解得,用③+④得:,解得,把代入③得,∴方程组的解为.【点睛】本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握解二元一次方程组的方法.2、(1);(2).【分析】利用加减法解二元一次方程组即可求解.【详解】解:(1)①×3得 ,②+③得 5x=15,解得x=3,把x=3代入①得 3+y=3,解得y=0,∴二元一次方程组的解是;(2)①×2得 10x-12y=18③,②×3得 21x-12y=-15④,④-③得 11x=-33,解得 x=-3,把x=-3代入①得 -15-6y=9,解得y=-4,∴二元一次方程组的解是.【点睛】本题考查了二元一次方程组的解法,熟练掌握加减法解二元一次方程组的步骤是解题关键,此题也可以用代入法解二元一次方程组.3、(1)甲、乙两种书柜每个的价格分别为元,元;(2)第一种方案:购进甲种书柜13个,乙种书柜17个,第二种方案:购进甲种书柜14个,乙种书柜16个,第三种方案:购进甲种书柜15个,乙种书柜15个.【分析】(1)设甲、乙两种书柜每个的价格分别为元,元,再根据甲种书柜3个、乙种书柜4个,共需资金1500元;甲种书柜4个,乙种书柜3个,共需资金1440元,列方程组,再解方程组即可得到答案;(2)设计划购进甲种书柜个,则购进乙种书柜个,根据乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金6420元,列不等式组,再解不等式组结合为正整数,从而可得答案.【详解】解:(1)设甲、乙两种书柜每个的价格分别为元,元,则 解得: 答:甲、乙两种书柜每个的价格分别为元,元.(2)设计划购进甲种书柜个,则购进乙种书柜个,则 由①得: 由②得:,所以: 又因为为正整数,或或 所以所有可行的购买方案为:第一种方案:购进甲种书柜13个,乙种书柜17个,第二种方案:购进甲种书柜14个,乙种书柜16个,第三种方案:购进甲种书柜15个,乙种书柜15个.【点睛】本题考查的是二元一次方程组的应用,一元一次不等式组的应用,设出合适的未知数,确定相等关系列方程组,确定不等关系列不等式组是解本题的关键.4、(1);(2)【分析】(1)两个方程相加,得出,求出代入②求出y即可;(2)①×4-②×3,得出,求出代入①求出x即可.【详解】1),①+②得:,解得:,把代入②得:,解得:,故方程组的解为;(2),①×4-②×3得:,解得:,把代入①得:,解得:,故方程组的解为.【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.5、.【分析】模仿材料发现第一个方程中各项系数都比第二个方程的各项系数都大3,可采用材料方法①﹣②得:x+y=1③,①﹣③×2021 得:x=4,再求y即可.【详解】解:①﹣②得:3x+3y=3,即x+y=1③①﹣③×2021 得:x=4把x=4代入③得:y=-3所以原方程组的解为.【点睛】本题考查解二元一次方程组.掌握抓住方程组的特征,用加减法解方程组是解题关键.①
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试巩固练习,共19页。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试巩固练习,共20页。试卷主要包含了下列是二元一次方程的是,方程x+y=6的正整数解有等内容,欢迎下载使用。
这是一份数学七年级下册第五章 二元一次方程组综合与测试同步练习题,共20页。试卷主要包含了若方程组的解为,则方程组的解为,已知关于x等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)