![2022年京改版七年级数学下册第五章二元一次方程组同步测评试题第1页](http://img-preview.51jiaoxi.com/2/3/12698585/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年京改版七年级数学下册第五章二元一次方程组同步测评试题第2页](http://img-preview.51jiaoxi.com/2/3/12698585/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年京改版七年级数学下册第五章二元一次方程组同步测评试题第3页](http://img-preview.51jiaoxi.com/2/3/12698585/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步测试题
展开
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步测试题,共17页。试卷主要包含了设m为整数,若方程组的解x,已知是二元一次方程,则的值为,下列方程组为二元一次方程组的是,如图,9个大小等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、小明解方程组的解为,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( )
A.■=8和★=3B.■=8和★=5C.■=5和★=3D.■=3和★=8
2、用代入消元法解关于、的方程组时,代入正确的是( )
A.B.
C.D.
3、解方程组的最好方法是( )
A.由①得再代入②B.由②得再代入①
C.由①得再代入②D.由②得再代入①
4、设m为整数,若方程组的解x、y满足,则m的最大值是( )
A.4B.5C.6D.7
5、《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为( )
A.B.
C.D.
6、某校九年级学生到礼堂开会,若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳.若设学生人数为,长凳数为,由题意列方程组为( )
A.B.
C.D.
7、已知是二元一次方程,则的值为( )
A.B.1C.D.2
8、下列方程组为二元一次方程组的是( )
A.B.C.D.
9、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形,若设小长方形的长为,宽为,则可列方程为( )
A.B.
C.D.
10、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需( )
A.1.2元B.1.05元C.0.95元D.0.9元
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、重庆市举行了中学生足球联赛,共赛17轮(即每队均需比赛17场),记分办法是胜一场得3分,平一场得1分,负一场得0分.若文德中学足球队的积分为16分,且踢平场数是所负场数的整数倍,且胜、平、负的场数各不相同.则文德中学足球队共负____场.
2、小明从邮局买了面值0.5元和0.8元的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?若设买了面值0.5元的邮票x枚,0.8元的邮票y枚,则根据题意可列出方程组为__________.
3、已知,用含m的代数式表示n,则______.
4、若方程组的解满足2x﹣3y>1,则k的的取值范围为 ___.
5、一元二次方程x﹣3y=8写成用含y的代数式表示x的形式为______.
三、解答题(5小题,每小题10分,共计50分)
1、若方程组是二元一次方程组,求a的值.
2、解方程组:
(1) (2)
3、解方程组:
(1)
(2)
4、一辆汽车从A地驶向B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为,在高速公路上行驶的速度为,汽车从A到B地一共行驶了.那么汽车在高速公路上行驶了多少千米?
5、解方程组
---------参考答案-----------
一、单选题
1、A
【分析】
把代入求出;再把代入求出数■即可.
【详解】
解:把代入得,,解得,;
把代入得,,解得,;
故选A
【点睛】
本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算.
2、A
【分析】
利用代入消元法把①代入②,即可求解.
【详解】
解:,
把①代入②,得:.
故选:A
【点睛】
本题主要考查了解二元一次方程组,解题的关键是熟练掌握二元一次方程组数为解法——代入消元法和加减消元法.
3、C
【分析】
观察两方程中系数关系,即可得到最好的解法.
【详解】
解:解方程组的最好方法是由①得,再代入②.
故选:C.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
4、B
【分析】
先把m当做常数,解一元二次方程,然后根据得到关于m的不等式,由此求解即可
【详解】
解:
把①×3得:③,
用③+①得:,解得,
把代入①得,解得,
∵,
∴,即,
解得,
∵m为整数,
∴m的最大值为5,
故选B.
【点睛】
本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.
5、B
【分析】
设甲持钱x,乙持钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.
【详解】
解:设甲持钱x,乙持钱y,
根据题意,得:,
故选:B.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.
6、B
【分析】
设学生人数为x,长凳数为y,然后根据若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳,列出方程即可.
【详解】
解:设学生人数为x,长凳数为y,
由题意得:,
故选B.
【点睛】
本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够准确理解题意.
7、C
【分析】
根据二元一次方程的定义,即含有两个未知数,且未知数的次数均为1,即可求解.
【详解】
解:∵是二元一次方程,
∴ ,且 ,
解得: .
故选:C
【点睛】
本题主要考查了二元一次方程的定义,解题的关键是熟练掌握含有两个未知数,且未知数的次数均为1.
8、B
【分析】
根据二元一次方程组的定义,即含有两个未知数,并且所含未知数的项的次数都是 1 的方程组在一起叫做二元一次方程组判断即可;
【详解】
解A.中,xy的次数是2,故A不符合题意;
B.是二元一次方程组,故B符合题意;
C.中y在分母上,故C不符合题意;
D.中有3个未知数,故D不符合题意;
故选B.
【点睛】
本题主要考查了二元一次方程组的识别,掌握二元一次方程组的定义,准确分析是解题的关键.
9、A
【分析】
根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.
【详解】
解:设小长方形的长为x,宽为y,
由题意得: 或,
故选A.
【点睛】
本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.
10、B
【分析】
设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,根据“购铅笔3支,练习本7本,圆珠笔1支共需3.15元;购铅笔4支,练习本8本,圆珠笔2支共需4.2元”建立三元一次方程组,然后将两个方程联立,即可求得的值.
【详解】
设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,
根据题意得:,
②–①可得:.
故选:B.
【点睛】
本题考查三元一次方程组的实际应用,解题关键是根据两个等量关系列出方程组,而利用整体思想,把所给两个等式整理为只含的等式.
二、填空题
1、1或5##5或1
【解析】
【分析】
设该校足球队胜了x场,平了y场,负了z场,依题意建立方程组,解方程组从而用k(整数)表示负场数y=kz,根据z为整数,分别求出k的取值,然后求出x、y的值,继而可得出该校足球队负几场即可.
【详解】
解:设文德中学足球队胜了x场,平了y场,负了z场,由题意得,
,
把③代入①②得:
,
解得:(k为整数).
又∵z为正整数,
∴当k=1时,z=7,y=7,x=3,(因为胜、平、负的场数各不相同,所以,不符合题意,舍去)
当k=2时,z=5,y=10,x=2;
当k=16时,z=1,y=16,x=0,
所以,文德中学足球队负了1或5场.
故答案为:1或5.
【点睛】
本题考查了三元一次组的应用,解答本题的关键是设出未知数列出方程组,用k表示出z的值,根据z为整数,即可分类讨论出z的值.
2、
【解析】
【分析】
由题意可得等量关系①0.5元的邮票枚数+面值0.8元的邮票枚数=9枚;②0.5元的邮票价格+面值0.8元的邮票总价格=6.3元,由等量关系列出方程组即可.
【详解】
解:设买了面值0.5元的邮票x枚,0.8元的邮票y枚,由题意得
,
故答案为:.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是找到题目中的等量关系,列出方程组.
3、
【解析】
【分析】
先移项,然后将的系数化为1,即可求解.
【详解】
解:
故答案为:
【点睛】
此题考查了解二元一次方程,解题的关键是将其中一个数看做已知数,另一个数看做未知数.
4、##
【解析】
【分析】
将①-②即可得,结合题意即可求得的范围.
【详解】
①②得,
2x﹣3y>1
解得
故答案为:
【点睛】
本题考查了解二元一次方程组,一元一次不等式,利用加减消元法得出方程组的解是解题关键.
5、3y+8##8+3y
【解析】
【分析】
移项,利用等式的性质变形即可.
【详解】
解: x﹣3y=8
x=3y+8
故答案为:3y+8
【点睛】
本题属于二元一次方程变形的问题,依据等式的性质变形即可.本题比较简单.
三、解答题
1、a=﹣3
【分析】
根据了二元一次方程组的定义,可得 且a﹣3≠0,解出即可
【详解】
解:∵方程组是二元一次方程组,
∴ 且a﹣3≠0,
∴a=﹣3.
【点睛】
本题主要考查了二元一次方程组的定义,熟练掌握含有两个未知数,且未知数的次数都是1的整式方程是二元一次方程,而由两个二元一次方程组成的方程组就是二元一次方程组是解题的关键.
2、(1);(2).
【分析】
(1)应用加减消元法,求出方程组的解即可;
(2)先把方程组化简,再应用加减消元法,求出方程组的解即可.
【详解】
解:(1),
①×2得,6x+2y=30③,
②+③得,11x=44,
解得x=4,
把x=4代入①得,y=3,
所以方程组的解是;
(2),
整理得,
①×2得,4x+6y=20③,
③-②得,5y=15,
解得y=3,
把y=3代入①得,x=,
所以方程组的解是.
【点睛】
本题考查了二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.
3、(1);(2)
【分析】
(1)利用把两个方程相加先消去求解 再求解,从而可得方程组的解;
(2)把方程①乘以3,再与方程②相加消去 求解 再求解 从而可得答案.
【详解】
解:(1)
①+②得:
解得:
把代入①得:
解得:
所以方程组的解是
(2)
①得:
②+③得:
解得:
把代入①得:
所以原方程组是解是
【点睛】
本题考查的是利用加减消元法解二元一次方程组,掌握“加减法解二元一次方程组”是解本题的关键.
4、120km
【分析】
根据题意,设出未知数,由等量关系:高速公路=2×普通公路,普通公路上的时间+高速公路的时间=总时间,列方程组求解即可.
【详解】
解:设普通公路长为x(km),高速公路长为y(km).
根据题意,得,
将代入得:
,解得:,
∴,
∴方程组的解为,
答:汽车在高速公路上行驶了120km.
【点睛】
此题考查了二元一次方程组的应用,关键是设出未知数,表示出每段行驶所花费的时间,得出方程组,难度一般.
5、.
【分析】
将①×10,②×6,进而根据加减消元法解二元一次方程组即可
【详解】
解:①×10,②×6,得
③×3-④,得11y=33,解得y=3.
将y=3代入③,解得x=4.
所以原方程组的解为
【点睛】
本题考查了解二元一次方程,先将方程组中未知数的系数化为整数是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试一课一练,共20页。试卷主要包含了若是关于x,如果x,已知关于x,若方程组的解为,则方程组的解为等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试当堂检测题,共19页。试卷主要包含了已知是方程的解,则k的值为,已知二元一次方程组则等内容,欢迎下载使用。
这是一份北京课改版第五章 二元一次方程组综合与测试课时作业,共21页。试卷主要包含了已知方程组中,x,若是方程的解,则等于等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)