年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    精品解析2022年京改版七年级数学下册第七章观察、猜想与证明综合测评试卷(含答案详解)

    精品解析2022年京改版七年级数学下册第七章观察、猜想与证明综合测评试卷(含答案详解)第1页
    精品解析2022年京改版七年级数学下册第七章观察、猜想与证明综合测评试卷(含答案详解)第2页
    精品解析2022年京改版七年级数学下册第七章观察、猜想与证明综合测评试卷(含答案详解)第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后复习题

    展开

    这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后复习题,共22页。试卷主要包含了下列语句中,错误的个数是等内容,欢迎下载使用。
    京改版七年级数学下册第七章观察、猜想与证明综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如果两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别是(  )A.48°,72° B.72°,108°C.48°,72°或72°,108° D.80°,120°2、如图,直线ABCD相交于点O,若∠AOC=125°,则∠BOD等于(  )
    A.55° B.125° C.115° D.65°3、下列命题中,是真命题的是(  A.同位角相等 B.同角的余角相等C.相等的角是对顶角 D.有且只有一条直线与已知直线垂直4、如图,O是直线AB上一点,OE平分∠AOB,∠COD=90°,则图中互余的角有( )对.
    A.5 B.4 C.3 D.25、若∠α=73°30',则∠α的补角的度数是(  )A.16°30' B.17°30' C.106°30' D.107°30'6、用反证法证明命题“在同一平面内,若 ,则 ac”时,首先应假设( A.ab B.bc C.ac 相交 D.ab7、如图,点在直线上,,若,则的大小为(    A.30° B.40° C.50° D.60°8、下列语句中,错误的个数是(    ①直线AB和直线BA是两条直线;②如果,那么点C是线段AB的中点;③两点之间,线段最短;④一个角的余角比这个角的补角小.A.1个 B.2个 C.3个 D.4个9、如图,∠AOC和∠BOD都是直角,如果∠DOC=38°,那么∠AOB的度数是(  )A.128° B.142° C.38° D.152°10、下列说法中正确的是(  )A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、若互余,且,则______.2、如图,已知,且∠1=48°,则∠2=_____,∠3=_____,∠4=_____.3、如图,AB是一条直线,如果∠1=65°15′,∠2=78°30′,则∠3=_________度.4、如图,直线ABCD交于O点,OD平分∠BOFOECD于点O,∠AOC=40,则∠EOF=_______.5、已知∠α与∠β互余,且∠α=40°,则∠β的度数为________.三、解答题(5小题,每小题10分,共计50分)1、已知ABCD,点EAB上,点FDC上,点G为射线EF上一点.【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).证明:过点G作直线MN∥AB又∵AB∥CDMN∥CD(        )MN∥AB∴∠A=(        )(        )MN∥CD∴∠D      (        )∴∠AGD=∠AGM+∠DGM=∠A+∠D【类比探究】如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.【应用拓展】如图3,AH平分∠GABDHAH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.2、如图,己知ABDCACBCAC平分∠DAB,∠B=50°,求∠D的大小.阅读下面的解答过程,并填括号里的空白(理由或数学式).解:∵ABDC     ),∴∠B+∠DCB=180°(      ).∵∠B=(      )(已知),∴∠DCB=180°﹣∠B=180°﹣50°=130°.ACBC(已知),∴∠ACB=(      )(垂直的定义).∴∠2=(      ).ABDC(已知),∴∠1=(      )(      ).AC平分∠DAB(已知),∴∠DAB=2∠1=(      )(角平分线的定义).ABDC(己知),∴(      )+∠DAB=180°(两条直线平行,同旁内角互补).∴∠D=180°﹣∠DAB     3、任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类.4、阅读并完成下列推理过程,在括号内填写理由.已知:如图,点分别在线段上,平分平分于点求证:证明:平分(已知),  平分(已知),  (角平分线的定义),(已知),      5、直线,直线分别交于点平分(1) 如图1,若平分,则的位置关系是      (2) 如图2,若平分,则有怎样的位置关系?请说明理由.(3) 如图3,若平分,则有怎样的位置关系?请说明理由. ---------参考答案-----------一、单选题1、B【分析】根据题意可得这两个角互补,设其中一个角为x,则另一个角为,由两个角之间的数量关系列出一元一次方程,求解即可得.【详解】解:∵两个角的两边两两互相平行,∴这两个角可能相等或者两个角互补,∵一个角的等于另一个角的∴这两个角互补,设其中一个角为x,则另一个角为根据题意可得:解得:故选:B.【点睛】题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.2、B【分析】根据对顶角相等即可求解.【详解】解:∵直线ABCD相交于点O,∠AOC=125°,∴∠BOD等于125°.故选B.【点睛】本题主要考查了对顶角的性质,熟知对顶角相等的性质是解题的关键.3、B【分析】利用平行线的性质、对顶角的性质、垂线的定义及互余的定义分别对每个选项进行判断后即可确定正确的选项.【详解】解:A、应该是两直线平行,同位角相等,则原命题是假命题,故本选项不符合题意;B、同角的余角相等,是真命题,故本选项符合题意;C、相等的角不一定是对顶角,则原命题是假命题,故本选项不符合题意; D、应该是在同一平面内,过一点有且只有一条直线与已知直线垂直,则原命题是假命题,故本选项不符合题意;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质、垂线的定义及互补的定义等知识.4、B【分析】根据余角的定义找出互余的角即可得解.【详解】解:∵OE平分∠AOB∴∠AOE=∠BOE=90°,∴互余的角有∠AOC和∠COE,∠AOC和∠BOD,∠COE和∠DOE,∠DOE和∠BOD共4对,故选:B.【点睛】本题考查了余角的定义,从图中确定余角时要注意按照一定的顺序,防止遗漏.5、C【分析】根据补角的定义可知,用180°﹣73°30'即可,【详解】解:∠α的补角的度数是180°﹣73°30'=106°30′.故选:C.【点睛】本题考查角的度量及补角的定义,解题关键是掌握补角的定义.6、C【分析】用反证法解题时,要假设结论不成立,即假设ac不平行(或ac相交).【详解】解:原命题“在同一平面内,若abcb,则a∥c”, 用反证法时应假设结论不成立,即假设ac不平行(或ac相交).故答案为:C【点睛】此题考查了反证法证明的步骤:(1)假设原命题结论不成立;(2)根据假设进行推理,得出矛盾,说明假设不成立;(3)原命题正确.7、D【分析】根据补角的定义求得∠BOC的度数,再根据余角的定义求得∠BOD的度数.【详解】解:∵∴∠BOC=180°-150°=30°,,即∠COD=90°,∴∠BOD=90°-30°=60°,故选:D【点睛】本题考查了补角和余角的计算,熟练掌握补角和余角的定义是解题的关键.8、B【分析】根据直线的定义、线段中点的定义、线段的性质、余角与补角的定义分别判断.【详解】解:①直线AB和直线BA是同一条直线,故该项符合题意;②如果,那么点C不一定是线段AB的中点,故该项符合题意;③两点之间,线段最短,故该项不符合题意;④一个角的余角比这个角的补角小,故该项不符合题意,故选:B【点睛】此题考查了直线的定义、线段中点的定义、线段的性质、余角与补角的定义,属于基础定义题型.9、B【分析】首先根据题意求出,然后根据求解即可.【详解】解:∵∠AOC和∠BOD都是直角,∠DOC=38°,故选:B.【点睛】此题考查了角度之间的和差运算,直角的性质,解题的关键是根据直角的性质求出的度数.10、B【分析】根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.【详解】解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;B.两点之间的所有连线中,线段最短,正确;C.相等的角不一定是对顶角,故不符合题意;D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;故选:B.【点睛】本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.二、填空题1、69°【分析】由题意可设∠α=2x,∠β=3x,根据互余可得关于x的方程,解方程即可求出x,然后代值计算即可;【详解】解:因为所以设∠α=2x,∠β=3x因为互余,所以2x+3x=90°,解得x=18°,所以∠α=36°,∠β=54°,所以故答案为69°.【点睛】本题考查了互余的概念和简单的一元一次方程的应用,属于基本题目,熟练掌握基本知识,掌握求解的方法是关键.2、48°    132°    48°    【分析】根据两直线平行内错角相等可求出∠2,根据两直线平行,同位角相等可求出∠4,同旁内角互补可求出∠3.【详解】解:∵    //,∠1=48°,∴∠2=∠1=48°,    //,∠1=48°,∴∠4=∠1=48°,    //∴∠3+∠4=180°∴∠3=180°-∠4=180°-48°=132°故答案为:48°;132°;48°【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.3、36.25【分析】根据度、分、秒之间的加减运算直接计算65°15′+78°30′即可得到∠1+∠2;观察图形可知∠1+∠2+∠3的和为平角,由此分析求解∠3的度数.【详解】解:∵∠1=65°15′,∠2=78°30′,∴∠3=180°﹣(∠1+∠2)=180°﹣(65°15′+78°30′)=36°15′=36.25°.故答案为:36.25.【点睛】本题主要考查角加减的计算,角的单位与角度制,结合图形找出各角的数量关系是解决此题的关键.4、130°【分析】根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OECD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.【详解】解:∵ABCD相交于点O∴∠BOD=∠AOC=40°.OD平分∠BOF∴∠DOF=∠BOD=40°,OECD∴∠EOD=90°,∴∠EOF=∠EOD+∠DOF=130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.5、50°【分析】根据两个角互余,则两个角相加之和为90°,进行求解即可.【详解】解:∵∠α与∠β互余,且∠α=40°,∴∠β=90°-∠α=50°,故答案为:50°.【点睛】本题考查了求一个角的余角,熟知两个角互余则它们之和等于90°是解答本题的关键.三、解答题1、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.【解析】【分析】基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQAB,由MN∥ABPQAB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CDPQCD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.【详解】解:基础问题:过点G作直线MNAB又∵AB∥CDMN∥CD(平行于同一条直线的两条直线平行),MN∥AB∴∠A=∠AGM(两直线平行,内错角相等),MN∥CD∴∠D=∠DGM(两直线平行,内错角相等),∴∠AGD=∠AGM+∠DGM=∠A+∠D故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:如图所示,过点G作直线MNAB又∵AB∥CDMN∥CDMN∥AB∴∠A=∠AGMMN∥CD∴∠D=∠DGM∴∠AGD=∠AGM-∠DGM=∠A-∠D 应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQAB又∵AB∥CDMN∥CDPQCDMN∥ABPQAB∴∠BAG=∠AGM,∠BAH=∠AHPMN∥CDPQCD∴∠CDG=∠DGM,∠CDH=∠DHP∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,∴∠GDH=44°,∠DHP=22°,∴∠CDG=66°,∠AHP=54°,∴∠DGM=66°,∠BAH=54°,AH平分∠BAG∴∠BAG=2∠BAH=108°,∴∠AGM=108°,∴∠AGD=∠AGM-∠DGM=42°. 【点睛】本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.2、见解析.【解析】【分析】先根据平行线的性质可得,从而可得,再根据垂直的定义可得,从而可得,然后根据平行线的性质可得,根据角平分线的定义可得,最后根据平行线的性质即可得.【详解】解:∵(已知),(两直线平行,同旁内角互补).(已知),(已知),(垂直的定义).(已知),(两直线平行,内错角相等).平分(已知),(角平分线的定义).(己知),(两条直线平行,同旁内角互补).【点睛】本题考查了平行线的性质、垂直的定义、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.3、共组成6对角,位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;②有公共顶点,角的两边互为反向延长线,具体分类见解析【解析】【分析】根据题意画出图形,然后结合题意可进行求解.【详解】解:如图,由图可知两条相交的直线,两两相配共组成6对角,位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;②有公共顶点,角的两边互为反向延长线,这6对角中有:4对邻补角(即为∠AOD与∠AOC,∠AOD与∠BOD,∠BOD与∠BOC,∠BOC与∠AOC),2对对顶角(即为∠AOD与∠BOC,∠BOD与∠AOC).【点睛】本题主要考查对顶角及邻补角的概念,熟练掌握对顶角及邻补角的概念是解题的关键.4、角平分线的定义;;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.【解析】【分析】根据角平分线的定义和平行线的性质与判定即可证明.【详解】证明:平分(已知),(角平分线的定义).平分(已知),(角平分线的定义),(已知),(两直线平行,同位角相等).(等量代换).(同位角相等,两直线平行).故答案为:角平分线的定义;;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.【点睛】本题主要考查了角平分线的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.5、(1);(2),理由见解析;(3),理由见解析【解析】【分析】(1)根据两直线平行,同位角相等可得,根据角平分线的意义可得,进而可得,即可判断(2)根据两直线平行,内错角相等,角平分线的意义可得,即可判断(3)设交于点,过点根据两直线平行,同旁内角互补,角平分线的意义,可得,进而可得,进而判断【详解】(1)如题图1,平分平分(2)如题图2,平分平分(3)如图,设交于点,过点平分平分【点睛】本题考查了平行线的性质与判定,角平分线的意义,掌握平行线的性质与判定是解题的关键. 

    相关试卷

    北京课改版七年级下册第七章 观察、猜想与证明综合与测试课堂检测:

    这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课堂检测,共23页。试卷主要包含了下列说法不正确的是,下列说法中,真命题的个数为,若的补角是125°,则的余角是等内容,欢迎下载使用。

    北京课改版七年级下册第七章 观察、猜想与证明综合与测试一课一练:

    这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试一课一练,共22页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。

    初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试复习练习题:

    这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试复习练习题,共21页。试卷主要包含了直线,一个角的补角比这个角的余角大.,如图,能判定AB∥CD的条件是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map