![京改版七年级数学下册第七章观察、猜想与证明综合测试练习题第1页](http://img-preview.51jiaoxi.com/2/3/12696406/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![京改版七年级数学下册第七章观察、猜想与证明综合测试练习题第2页](http://img-preview.51jiaoxi.com/2/3/12696406/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![京改版七年级数学下册第七章观察、猜想与证明综合测试练习题第3页](http://img-preview.51jiaoxi.com/2/3/12696406/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时练习
展开
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时练习,共22页。试卷主要包含了已知,则的余角的补角是,下列命题是真命题的是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题中,为真命题的是( )A.若,则 B.若,则C.同位角相等 D.对顶角相等2、如图,直线AB、CD相交于点O,EO⊥AB于点O,∠EOC=35°,则∠AOD的度数为( )A.55° B.125° C.65° D.135°3、如图,下列条件能判断直线l1//l2的有( )①;②;③;④;⑤A.1个 B.2个 C.3个 D.4个4、已知,则的余角的补角是( )A. B. C. D.5、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为140°,则第二次的拐角为( )A.40° B.50° C.140° D.150°6、已知∠α的两边分别平行于∠β的两边.若∠α=60°,则∠β的大小为( )A.30° B.60° C.30°或60° D.60°或120°7、对于命题“如果,那么.”能说明它是假命题的反例是( )A. B.,C., D.,8、下列命题是真命题的是( )A.等角的余角相等 B.同位角相等C.互补的角一定是邻补角 D.两个锐角的和是钝角9、如果两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别是( )A.48°,72° B.72°,108°C.48°,72°或72°,108° D.80°,120°10、下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( )A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将一条等宽的纸条按图中方式折叠,若∠1=40°,则∠2的度数为 ___.2、已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果ab,a⊥c,那么b⊥c; ②如果ba,ca,那么bc;③如果b⊥a,c⊥a,那么b⊥c; ④如果b⊥a,c⊥a,那么bc.其中正确的是__.(填写序号)3、如图,∠AOB与∠BOC互补,OM平分∠BOC,且∠BOM=35°,则∠AOB=____ °.
4、若=27°,则的补角是____________5、如图,直线AB和CD交于O点,OD平分∠BOF,OE ⊥CD于点O,∠AOC=40,则∠EOF=_______.三、解答题(5小题,每小题10分,共计50分)1、完成下列填空:已知:如图,,,CA平分;求证:.证明:∵(已知)∴________( )∵(已知)∴________( )又∵CA平分(已知)∴________( )∵(已知)∴_____________=30°( )2、感知与填空:如图①,直线AB∥CD.求证:∠B+∠D=∠BED.证明:过点E作直线EF∥CD,∠2=______,( )AB∥CD(已知),EF∥CD_____∥EF,( )∠B=∠1,( )∠1+∠2=∠BED,∠B+∠D=∠BED,( )方法与实践:如图②,直线AB∥CD.若∠D=53°,∠B=22°,则∠E=______度.3、如图①,已知∠AOD为直角,OB平分∠AOC,OD平分∠COE.(1)将∠AOC,∠AOE,∠AOB,∠AOD按从小到大的顺序用“<”号连接.(2)与∠BOC相等的角为_____________,与∠BOC互余的角为______________.(3)若∠DOE=24°,求∠AOC和∠AOB的度数.(4)反向延长射线OA到F,如图②,∠EOF与∠AOC是否相等?____________(直接填“相等”或“不相等”或“不一定相等”).4、直线AB//CD,直线EF分别交AB、CD于点M、N,NP平分∠MND.(1)如图1,若MR平分∠EMB,则MR与NP的位置关系是 .(2)如图2,若MR平分∠AMN,则MR与NP有怎样的位置关系?请说明理由.(3)如图3,若MR平分∠BMN,则MR与NP有怎样的位置关系?请说明理由.5、已知直线AB和CD交于点O,∠AOC=α,∠BOE=90°,OF平分∠AOD.(1)当α=30°时,则∠EOC=_________°;∠FOD=_________°.(2)当α=60°时,射线OE′从OE开始以12°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求经过多少秒射线OE′与射线OF′第一次重合?(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间为_________秒. ---------参考答案-----------一、单选题1、D【分析】利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.【详解】解:A、若,则或,故A错误.B、当时,有,故B错误.C、两直线平行,同位角相等,故C错误.D、对顶角相等,D正确.故选:D .【点睛】本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.2、B【分析】先根据余角的定义求得,进而根据邻补角的定义求得即可.【详解】EO⊥AB,∠EOC=35°,,.故选:B.【点睛】本题考查了垂直的定义,求一个角的余角、补角,掌握求一个角的余角与补角是解题的关键.3、D【分析】根据平行线的判定定理进行依次判断即可.【详解】①∵∠1,∠3互为内错角,∠1=∠3,∴; ②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;③∠4,∠5互为同位角,∠4=∠5,∴; ④∠2,∠3没有位置关系,故不能证明 ,⑤,,∴∠1=∠3,∴,故选D.【点睛】此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.4、A【分析】根据余角和补角定义解答.【详解】解:的余角的补角是,故选:A .【点睛】此题考查余角和补角的定义:和为90度的两个角互为余角,和为180度的两个角是互为补角.5、C【分析】由于拐弯前、后的两条路平行,用平行线的性质求解即可.【详解】解:∵拐弯前、后的两条路平行,∴(两直线平行,内错角相等).故选:C.【点睛】本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.6、D【分析】根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出∠α=∠1=∠β,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,∠α+∠2=180°,再根据两直线平行,内错角相等,∠2=∠β,即可得出答案.【详解】解:如图1,∵a∥b,∴∠1=∠α,∵c∥d,∴∠β=∠1=∠α=60°;如图(2),∵a∥b,∴∠α+∠2=180°,∵c∥d,∴∠2=∠β,∴∠β+∠α=180°,∵∠α=60°,∴∠β=120°.综上,∠β=60°或120°.故选:D.【点睛】本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键.7、A【分析】根据假命题的概念、角的计算解答.【详解】解:当时,,但,命题“如果,那么”是假命题,故选:A.【点睛】本题考查的是命题的真假判断,解题的关键是掌握正确的命题叫真命题,错误的命题叫做假命题,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8、A【分析】由同角或等角的余角相等可判断A,由平行线的性质可判断B,由邻补角的定义可判断C,通过举反例,比如 可判断D,从而可得答案.【详解】解:等角的余角相等,正确,是真命题,故A符合题意,两直线平行,同位角相等,所以同位角相等是假命题,故B不符合题意;互补的角不一定是邻补角,所以互补的角一定是邻补角是假命题,故C不符合题意;两个锐角的和不一定是钝角,所以两个锐角的和是钝角是假命题,故D不符合题意;故选:A【点睛】本题考查的是等角的余角相等,平行线的性质,邻补角的定义,锐角与钝角的含义,掌握判断命题真假的方法是解题的关键.9、B【分析】根据题意可得这两个角互补,设其中一个角为x,则另一个角为,由两个角之间的数量关系列出一元一次方程,求解即可得.【详解】解:∵两个角的两边两两互相平行,∴这两个角可能相等或者两个角互补,∵一个角的等于另一个角的,∴这两个角互补,设其中一个角为x,则另一个角为,根据题意可得:,解得:,,故选:B.【点睛】题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.10、C【分析】根据平行线的性质与判定可以判断①②④,根据垂线段最短可以判断③.【详解】解:①平面内,垂直于同一条直线的两直线平行,是真命题;②经过直线外一点,有且只有一条直线与这条直线平行,是真命题;③垂线段最短,是真命题;④两直线平行,同旁内角互补,是假命题,∴真命题有3个,故选C.【点睛】本题主要考查了判断命题真假,熟知相关知识是解题的关键.二、填空题1、70︒【分析】如图,由平行线的性质可求得∠1=∠3,由折叠的性质可求得∠4=∠5,再由平行线的性质可求得∠2.【详解】解:如图,∵a∥b,∴∠3=∠1=40°,∠2=∠5,又由折叠的性质可知∠4=∠5,且∠3+∠4+∠5=180°,∴∠5=(180°-∠3)=70°,∴∠2=70°,故答案为:70︒.【点睛】本题主要考查平行线的性质和判定,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.2、①②④【分析】根据两直线的位置关系一一判断即可.【详解】解:在同一个平面内,①如果ab,a⊥c,那么b⊥c,正确;②如果ba,ca,那么bc,正确;③如果b⊥a,c⊥a,那么bc,错误;④如果b⊥a,c⊥a,那么bc,正确;故答案为:①②④.【点睛】本题考查两直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.3、110【分析】根据补角定义可得∠AOB+∠BOC=180°,再根据角平分线定义可得∠BOC的度数,然后可得∠AOB的度数.【详解】解:∵∠AOB与∠BOC互补,∴∠AOB+∠BOC=180°,∵OM平分∠BOC,∴∠BOC=2∠BOM=70°,∴∠AOB=110°,故答案为:110.【点睛】此题主要考查了补角和角平分线,关键是掌握两个角和为180°,这两个角称为互为补角.4、153°【分析】根据补角的定义求解即可.【详解】解:∵=27°,则的补角=180°-27°=153°故答案为:153°【点睛】本题考查了补角的定义,熟练求补角的方法是解题的关键.5、130°【分析】根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OE⊥CD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.【详解】解:∵AB、CD相交于点O,∴∠BOD=∠AOC=40°.∵OD平分∠BOF,∴∠DOF=∠BOD=40°,∵OE⊥CD,∴∠EOD=90°,∴∠EOF=∠EOD+∠DOF=130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.三、解答题1、180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线的定义;;两直线平行,内错角相等【解析】【分析】由AB与CD平行,利用两直线平行同旁内角互补求出∠BCD度数,由CA为角平分线,利用角平分线定义求出∠2的度数,再利用两直线平行内错角相等即可确定出∠1的度数.【详解】证明:∵AB∥CD,(已知)∴∠B+∠BCD=180°,(两直线平行同旁内角互补)∵∠B=120°(已知),∴∠BCD=60°.又CA平分∠BCD(已知),∴∠2=30°,(角平分线定义).∵AB∥CD(已知),∴∠1=∠2=30°.(两直线平行内错角相等).故答案为:180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线定义;∠2;两直线平行,内错角相等.【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.2、∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31.【解析】【分析】过点E作直线EF//CD,由两直线平行,内错角相等得出∠2=∠D;由两直线都和第三条直线平行,那么这两条直线也互相平行得出AB//EF;由两直线平行,内错角相等得出∠B=∠1;由∠1+∠2=∠BED,等量代换得出∠B+∠D=∠BED;方法与实践:如图②,由平行的性质可得∠BOD=∠D=53°,然后再根据三角形外角的性质解答即可【详解】解:过点E作直线EF∥CD,∠2=∠D,(两直线平行,内错角相等)AB∥CD(已知),EF∥CDAB//EF,(两直线都和第三条直线平行,那么这两条直线也互相平行)∠B=∠1,(两直线平行,内错角相等)∠1+∠2=∠BED,∠B+∠D=∠BED,(等量代换 )方法与实践:如图②,∵直线AB∥CD∴∠BOD=∠D=53°∵∠BOD=∠E+∠B∴∠E=∠BOD-∠B=53°- 22°=31°.故答案依次为:∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31. 【点睛】本题主要考查了平行线的判定与性质、三角形内角和定理等知识点;熟练掌握平行线的性质是解答本题的关键.3、(1)∠AOB<∠AOC<∠AOD<∠AOE;(2)∠AOB,∠BOD;(3)66°,33°;(4)相等【解析】【分析】(1)由图象可知,开合幅度越大,角越大,故∠AOB<∠AOC<∠AOD<∠AOE(2)OB平分∠AOC,故∠BOC=∠AOB.互余的定义为两角相加为90°,∠AOB+∠BOD=90°,故∠BOC+∠BOD =90°.(3)因为OD平分∠COE,所以∠COD=∠DOE=24°,在∠AOD中∠AOD=∠AOC+∠DOE,故∠AOC=66°,OB平分∠AOC,故∠BOC=∠AOB=∠AOC=33°.(4)射线OA延长到F,即说明∠AOF为平角,则∠DOF=∠AOD=90°,又因为∠COD=∠DOE,所以∠DOF-∠DOE=∠AOD-∠COD,故∠EOF=∠AOC.【详解】解:(1)∠AOB<∠AOC<∠AOD<∠AOE . (2)已知∠AOD为直角,OB平分∠AOC,OD平分∠COE,∴∠BOC=∠AOB,∠DOC=∠EOD,又∵∠AOD=90°且∠AOD=∠BOC+∠AOB+∠COD,∠BOC+∠BOD=90°. (3)∵∠AOD为直角,∴∠AOD=90°.∵OD平分∠COE,∠DOE=24°,∴∠COD=∠DOE=24°.∴∠AOC=∠AOD-∠DOE=90°-24°=66°.∵OB平分∠AOC,∴∠AOB= ∠AOC= 66°=33°. (4)∵∠AOF为平角∴∠DOF=180°-∠AOD∴∠DOF=180°-90°=90°∴∠EOF=∠DOF-∠DOE=∠AOD-∠COD=∠AOC故∠EOF和∠AOC相等.【点睛】本题考查了几何图形中角度计算问题,熟练运用角平分线、补角、余角等性质是解题的关键.4、(1)MR//NP;(2)MR//NP,理由见解析;(3)MR⊥NP,理由见解析【解析】【分析】(1)根据AB∥CD,得出∠EMB=∠END,根据MR平分∠EMB,NP平分∠EBD,得出,可证∠EMR=∠ENP即可;(2)根据AB∥CD,可得∠AMN=∠END,根据MR平分∠AMN,NP平分∠EBD,可得,得出∠RMN=∠ENP即可;(3设MR,NP交于点Q,过点Q作QG∥AB,根据AB∥CD,可得∠BMN+∠END=180°,根据MR平分∠BMN,NP平分∠EBD,得出,计算两角和∠BMR+∠NPD=,根据GQ∥AB,AB∥CD,得出∠BMQ=∠GQM,∠GQN=∠PND,得出∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°即可.【详解】证明:(1)结论为MR∥NP.如题图1∵AB∥CD,∴∠EMB=∠END,∵MR平分∠EMB,NP平分∠EBD,∴,∴∠EMR=∠ENP,∴MR∥BP;故答案为MR∥BP;(2)结论为:MR∥NP.如题图2,∵AB∥CD,∴∠AMN=∠END,∵MR平分∠AMN,NP平分∠EBD,∴∴∠RMN=∠ENP,∴MR∥NP;(3)结论为:MR⊥NP.如图,设MR,NP交于点Q,过点Q作QG∥AB,∵AB∥CD,∴∠BMN+∠END=180°,∵MR平分∠BMN,NP平分∠EBD,∴,∴∠BMR+∠NPD=,∵GQ∥AB,AB∥CD,∴GQ∥CD∥AB,∴∠BMQ=∠GQM,∠GQN=∠PND,∴∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°,∴MR⊥NP,【点睛】本题考查平行线性质与判定,角平分线定义,角的和差,掌握平行线性质与判定,角平分线定义,角的和差是解题关键.5、(1)60,75;(2)秒;(3)3或12或21或30【解析】【分析】(1)根据题意利用互余和互补的定义可得:∠EOC与∠FOD的度数.(2)由题意先根据,得出∠EOF=150°,则射线OE'、OF'第一次重合时,其OE'运动的度数+OF'运动的度数=150,列式解出即可;(3)根据题意分两种情况在直线OE的左边和右边,进而根据其夹角列4个方程可得时间.【详解】解:(1)∵∠BOE=90°,∴∠AOE=90°,∵∠AOC=α=30°,∴∠EOC=90°-30°=60°,∠AOD=180°-30°=150°,∵OF平分∠AOD,∴∠FOD=∠AOD=×150°=75°;故答案为:60,75;(2)当,.设当射线与射线重合时至少需要t秒,可得,解得:;答:当射线与射线重合时至少需要秒;(3)设射线转动的时间为t秒,由题意得:或或或,解得:或12或21或30.答:射线转动的时间为3或12或21或30秒.【点睛】本题考查对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记相关性质是解题的关键,注意要分情况讨论.
相关试卷
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试巩固练习,共24页。试卷主要包含了如图,,交于点,,,则的度数是,下列语句中叙述正确的有等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试精练,共20页。试卷主要包含了下列说法中,假命题的个数为,下列命题中,为真命题的是,若的补角是125°,则的余角是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试综合训练题,共20页。试卷主要包含了下列命题中是真命题的是,若的补角是125°,则的余角是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)