初中数学第九章 数据的收集与表示综合与测试当堂达标检测题
展开
这是一份初中数学第九章 数据的收集与表示综合与测试当堂达标检测题,共19页。试卷主要包含了为了解学生参加体育锻炼的情况等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、班长王亮依据今年月“书香校园”活动中全班同学的课外阅读数量单位:本,绘制了如图折线统计图,下列说法正确的是( )
A.每月阅读数量的平均数是B.众数是
C.中位数是D.每月阅读数量超过的有个月
2、八(3)班七个兴趣小组人数分别为4、4、5、、6、6、7,已知这组数据的平均数是5,则这组数据的中位数是( )
A.6B.5C.4D.3
3、下列调查中,最适合采用全面调查(普查)方式的是( )
A.检测生产的鞋底能承受的弯折次数
B.了解某批扫地机器人平均使用时长
C.选出短跑最快的学生参加全市比赛
D.了解某省初一学生周体育锻炼时长
4、5G是新一代信息技术的发展方向和数字经济的重要基础,预计我国5G商用将直接创造更多的就业岗位.小明准备到一家公司应聘普通员,他了解到该公司全体员工的月收入如下:
对这家公司全体员工的月收入,能为小明提供更为有用的信息的统计量是( )A.平均数B.众数C.中位数D.方差
5、下列调查中,最适合采用抽样调查的是( )
A.调查一批防疫口罩的质量
B.调查某校九年级学生的视力
C.对乘坐某班次飞机的乘客进行安检
D.国务院于2020年11月1日开展的第七次全国人口调查
6、小明记录了今年元月份某五天的最低温度(单位:℃):1,2,0,-1,-2,这五天的最低温度的平均值是( )
A.1B.2C.0D.-1
7、下列调查中,适合采用全面调查的是( )
A.了解一批电灯泡的使用寿命B.调查榆林市中学生的视力情况
C.了解榆林市居民节约用水的情况D.调查“天问一号”火星探测器零部件的的质量
8、为了解学生参加体育锻炼的情况、现将九年级(1)班同学一周的体育锻炼情况绘制成如图所示不完整的条形统计图,已知锻炼7小时的人数占全班总人数的20%,则下列结论正确的是( )
A.九年级(1)班共有学生40名B.锻炼时间为8小时的学生有10名
C.平均数是8.5小时D.众数是8小时
9、已知一组数据3,7,5,3,2,这组数据的众数为( )
A.2B.3C.4D.5
10、在“支援河南洪灾”捐款活动中,某班级8名同学积极捐出自己的零花钱,奉献爱心,他们捐款的数额分别是(单位:元):60,25,60,30,30,25,65,60.这组数据的众数和中位数分别是( )
A.60,30B.30,30C.25,45D.60,45
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图所示是小明一天24小时的作息时间分配的扇形统计图,那么他的阅读时间是________小时.
2、一个扇形统计图中,某部分占总体的百分比为13%,则该部分所对扇形圆心角为______.
3、为了了解学生对《未成年人保护法》的知晓情况.某学校随机选取了部分学生进行调查,并将调查结果绘制成如图所示的扇形图.若该学校共有学生1800人.则可以估计其中对《未成年人保护法》非常清楚的学生约有 __人.
4、已知一组数据:3、4、5、6、8、8、8、10,这组数据的中位数是_________.
5、数据8、9、8、10、8、8、10、7、9、8的中位数是________,众数是__________.
三、解答题(5小题,每小题10分,共计50分)
1、小明参加卖报纸的社会实践活动,他调查了一个报亭某天A、B、C三种报纸的销售量,并把调查结果绘制成如图所示条形统计图.
(1)求该天A、C报纸的销售量各占这三种报纸销售量之和的百分比.
(2)请绘制该天A、B、C三种报纸销售量的扇形统计图.
(3)小明准备按上述比例购进这三种报纸共100份,他应购进这三种报纸各多少份.
2、某校对全校2600名学生进行“新冠防疫知识”的教育活动,从中抽取部分学生进行测试,成绩评定按从高分到低分排列分为A、B、C、D四个等级,绘制了图(1)、图(2)两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)求本次抽查的学生共有多少人?
(2)将两幅统计图补充完整.
(3)求扇形统计图中“B”等级所对应的扇形圆心角的度数.
(4)估计全校得“D”等级的学生有多少人?
3、12月,我校初2022届学生进行了一次体育机器模拟测试(包含跳绳、立定跳远、实心球三项,共计满分50分).测试完成后,为了解初2022届学生的体育训练情况,在初2022届的学生中随机抽取了20名男生,20名女生的本次体育机考的测试成绩,对数据进行整理分析,并给出了下列信息:
20名女生的测试成绩统计如下:44,47,48,45,50,49,45,60,48,49,50,50,44,50,43,50,44,50,49,45.
抽取的20名男生的测试成绩扇形统计图如下:
其中,抽取的20名男生的测试成绩中,组的成绩如下:47,48,48,47,48,48.
抽取男生与女生的学生的测试成绩的平均数、中位数、众数如下表所示:
(1)根据以上信息可以求出:______,______,______;
(2)结合以上的数据分析,针对本次的体育测试成绩中,你认为此次的体育测试成绩男生与女生谁更好?请说明理由(理由写出一条即可);
(3)若初2022届学生中男生有700人,女生有900人,(规定49分及以上为优秀)请估计该校初2022届参加此次体育测试的学生中成绩为优秀的学生人数.
4、为考察甲、乙两种农作物的长势,研究人员分别抽取了10株苗,测得它们的高度(单位:cm)如下:
甲:9,14,11,12,9,13,10,8,12,8;
乙:8,13,12,11,9,12,7,7,9,11
你认为哪种农作物长得高一些?说明理由.
5、某条小河平均水深1.3m,一个身高1.6m的小孩在这条河里游泳是否一定没有危险?
---------参考答案-----------
一、单选题
1、D
【解析】
【分析】
根据平均数的计算方法,可判断A;根据众数的定义,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.
【详解】
解:A、每月阅读数量的平均数是,故A错误,不符合题意;
B、出现次数最多的是,众数是,故B错误,不符合题意;
C、由小到大顺序排列数据,中位数是,故C错误,不符合题意;
D、由折线统计图看出每月阅读量超过的有个月,故D正确,符合题意;
故选:D.
【点睛】
本题考查了折线统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.折线统计图表示的是事物的变化情况.注意求中位数先将该组数据按从小到大或按从大到小的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.
2、B
【解析】
【分析】
本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.
【详解】
解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,
∴x=5×7−4−4−5−6−6−7=3,
∴这一组数从小到大排列为:3,4,4,5,6,6,7,
∴这组数据的中位数是:5.
故选:B.
【点睛】
本题考查的是中位数和平均数的定义,熟知中位数的定义是解答此题的关键.
3、C
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
解:A、检测生产的鞋底能承受的弯折次数,具有破坏性,适合采用抽样调查;
B、了解某批扫地机器人平均使用时长,具有破坏性,适合采用抽样调查;
C、选出短跑最快的学生参加全市比赛,精确度要求高,适合采用全面调查;
D、了解某省初一学生周体育锻炼时长,调查数量较大且调查结果要求准确度不高,适合采用抽样调查;
故选:C.
【点睛】
本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
4、B
【解析】
【分析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然小明想了解到该公司全体员工的月收入,那么应该是看多数员工的工资情况,故值得关注的是众数.
【详解】
解:由于众数是数据中出现次数最多的数,故小明应最关心这组数据中的众数.
故选:B.
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
5、A
【解析】
【分析】
根据抽样调查和普查的定义进行求解即可.
【详解】
解:A.调查一批防疫口罩的质量,适合抽样调查,故选项符合题意;
B.调查某校九年级学生的视力,适合全面调查,故选项不符合题意;
C.对乘坐某班次飞机的乘客进行安检,适合全面调查,故选项不符合题意;
D.国务院于2020年11月1日开展的第七次全国人口调查,适合全面调查,故选项不符合题意;
故选A.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
6、C
【解析】
【分析】
利用平均数公式计算即可.
【详解】
解:这五天的最低温度的平均值是.
故选:C.
【点睛】
此题考查平均数公式,熟记公式是解题的关键.
7、D
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析即可.
【详解】
解:A.了解一批电灯泡的使用寿命,具有破坏性,适合抽样调查,不符合题意;
B.调查榆林市中学生的视力情况,适合抽样调查,不符合题意;
C.了解榆林市居民节约用水的情况,适合抽样调查,不符合题意;
D.调查“天问一号”火星探测器零部件的的质量,必需采用全面调查,符合题意;
故选:D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
8、D
【解析】
【分析】
根据频数之和等于总数,频数定义,加权平均数的计算,众数的定义逐项判断即可求解.
【详解】
解:A. 九年级(1)班共有学生10+20+15+5=50名,故原选项判断错误,不合题意;
B. 锻炼时间为8小时的学生有20名,故原选项判断错误,不合题意;
C. 平均数是小时,故原选项判断错误,不合题意;
D. 众数是8小时,故原选项判断正确,符合题意.
故选:D
【点睛】
本题考查了频数、加权平均数、众数等知识,理解相关概念,看到条形图是解题关键.
9、B
【解析】
【分析】
根据众数的定义(一组数据中,出现次数最多的数据,叫这组数据的众数)即可求出这组数据的众数.
【详解】
解:在这组数据中3出现了2次,出现的次数最多,则这组数据的众数是3;
故选:B.
【点睛】
此题考查了众数的定义;熟记众数的定义是解决问题的关键.
10、D
【解析】
【分析】
根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可.
【详解】
解:60出现了3次,出现的次数最多,
则众数是60元;
把这组数据从小到大排列为:25,25,30,30,60,60,60,65,
则中位数是=45(元).
故选:D.
【点睛】
此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),熟记定义是解题关键.
二、填空题
1、1
【解析】
【分析】
先求“阅读”所占的圆心角,再用×24,即可得出结果.
【详解】
解:360-(60+30+120+135)=15,
×24=1(小时),
故答案为:1.
【点睛】
本题考查了扇形统计图的应用,能够求出“阅读”所占的圆心角是解决本题的关键.
2、46.8°
【解析】
【分析】
利用占总体的百分比是,则这部分的圆心角是360度的,即可求出结果.
【详解】
解:该部分所对扇形圆心角为:.
故答案为:.
【点睛】
本题考查扇形统计图中扇形所对圆心角的度数与百分比的关系,熟练掌握扇形所对圆心角的计算方法是解题关键.
3、540
【解析】
【分析】
先求出非常清楚所占的百分比,再乘以该校的总人数,即可得出答案.
【详解】
解:根据题意得:
(人.
答:可以估计其中对《未成年人保护法》非常清楚的学生约有540人.
故答案为:540.
【点睛】
此题考查了用样本估计总体,在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.
4、7
【解析】
【分析】
将一组数据按照从小到大的顺序进行排列,排在中间位置上的数叫作这组数据的中位数,若这组数据的个数为偶数个,那么中间两位数的平均数就是这组数据的中位数,据此解答即可得到答案.
【详解】
解:按照从小到大的顺序排列为:3、4、4、5、6、8,8,10
中位数:(6+8)÷2=7
故答案为:7.
【点睛】
本题主要考查中位数的求解,根据中位数的定义,将数据从小到大进行排列是解决本题的关键.
5、 8 8
【解析】
【分析】
根据中位数的定义:一组数据中处在最中间的数或处在最中间的两个数的平均数;众数的定义:一组数据中出现次数最多的数,进行求解即可.
【详解】
解:把这组数据从小到大排列为:7,8,8,8,8,8,9,9,10,10,
∵处在最中间的两个数分别为8,8,
∴中位数,
∵8出现了四次,出现的次数最多,
∴众数为8,
故答案为:8,8.
【点睛】
本题主要考查了求众数和求中位数,解题的关键在于能够熟练掌握相关知识进行求解.
三、解答题
1、(1)该天A、C报纸的销售量各占这三种报纸销售量之和的20%和30%;(2)见解析;(3)小明应购进A种报纸20份,B种报纸50份,C种报纸30份
【解析】
【分析】
(1)用A,C报纸的销售量分别除以三种报纸销售量之和,然后求解即可;
(2)由(1)的结果绘制扇形统计图;
(3)用100分别乘以三种报纸所占的百分比即可求得结果.
【详解】
解:(1),.
∴ 该天A、C报纸的销售量各占这三种报纸销售量之和的20%和30%.
(2)A、B、C三种报纸销售量的扇形统计图如图所示.
(3)100×20%=20(份),100×50%=50(份),100×30%=30(份).
∴ 小明应购进A种报纸20份,B种报纸50份,C种报纸30份.
【点睛】
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
2、(1)120人;(2)见解析;(3)144°;(4)260人
【解析】
【分析】
(1)由A等级人数及其所占百分比可得总人数;
(2)总人数乘以C等级百分比求出其人数,再根据四个等级人数之和等于总人数求出D等级人数,继而分别用B、D等级人数除以总人数求出其所占百分比即可补全图形;
(3)用360°乘以样本中B对应的百分比即可;
(4)用总人数乘以样本中D等级人数所占百分比即可.
【详解】
解:(1)本次抽查的学生人数为24÷20%=120(人);
(2)C等级人数为120×30%=36(人),
D等级人数为120﹣(24+48+36)=12(人),
B等级人数所占百分比为48÷120×100%=40%,
D等级人数所占百分比为12÷120×100%=10%,
补全图形如下:
(3)扇形统计图中“B”等级所对应的扇形圆心角的度数为360°×40%=144°;
(4)估计全校得“D”等级的学生有2600×10%=260(人).
【点睛】
此题主要考查统计调查的应用没解题的关键是熟知条形统计图与扇形统计图的特点.
3、(1)15,48,50;(2)女生的成绩较好,理由见解析;(3)755人.
【解析】
【分析】
(1)由扇形统计图,可求出a的值,根据中位数的意义,将男生成绩排序,找出处于中间位置的两个数的平均值即为中位数,从女生成绩中找出出现次数最多的数即为众数;
(2)通过比较平均数、中位数、众数的大小即可解答;
(3)抽查女生20人中优秀的有10人,男生20人中优秀的9人,求出两个优秀占抽查总人数的比例,求出该校初2022届参加此次测试的学生中优秀的学生人数即可.
【详解】
解:(1)1-5%-5%-45%-30%=15%,
由扇形统计图中,可知,男生成绩的中位数位于D组,男生成绩第10,11个数成绩高于46,但不超过48分的成绩的较大的两个48,48,
女生成绩出现次数最多的是50,因此众数是50,
故答案为:15,48,50;
(2)女生的成绩较好,理由:男女生的平均数相等,女生的中位数、众数都比男生大,因此女生的成绩较好.
(3)(人)
(人)
答:估计该校初2022届参加此次体育测试的学生中成绩为优秀的学生人数为755人.
【点睛】
本题考查平均数、中位数、众数、统计表、理解平均数、中位数、众数的意义是解题关键,样本估计总体是统计中常用的方法.
4、甲,理由见解析
【解析】
【分析】
求出两组数据的平均数,比较大小即可.
【详解】
解:(cm);
(cm);
甲、乙两种农作物的平均高度分别为10.6cm和9.9cm,因此可以认为甲种农作物长得高一些.
【点睛】
本题考查了平均数的计算,解题关键是会熟练运用平均数公式进行计算.
5、可能有危险
【解析】
【分析】
根据平均数的意义可知1.3m只是水深的平均水平,有深度大于1.3m的,也有深度小于1.3m的地方,据此解答即可.
【详解】
解:可能有危险.因为1.3m只是水深的平均水平,并不能说明具体各个地点的深度,可能各个地点的水深有很大的差异,如可能有的地方水深超过1.6m,甚至更深.
【点睛】
本题考查了平均数的意义,理解平均数的代表的含义是解本题的关键.设计本题,旨在通过具体情境让学生进一步感受平均数的实际意义.
月收入/元
45000
19000
10000
5000
4500
3000
2000
人数
1
2
3
6
1
11
1
抽取的20名男生成绩得分用表示,共分成五组:
:;
:;
:;
:;
:.
性别
平均数
中位数
众数
女生
47.5
48.5
男生
47.5
49
相关试卷
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试达标测试,共18页。试卷主要包含了下列说法中正确的个数是个.等内容,欢迎下载使用。
这是一份2021学年第九章 数据的收集与表示综合与测试同步练习题,共18页。试卷主要包含了下列做法正确的是,下列调查中,最适合采用全面调查等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试练习,共18页。试卷主要包含了已知一组数据,下列调查中,适合用普查方式的是等内容,欢迎下载使用。