初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后作业题
展开
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后作业题,共18页。试卷主要包含了下列做法正确的是,有一组数据,已知一组数据等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一组数据中的中位数( )
A.只有1个B.有2个C.没有D.不确定
2、在共有人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名.只需要了解自己的成绩以及全部成绩的( )
A.平均数B.众数C.中位数D.最高分与最低分的差
3、一组数据2,9,5,5,8,5,8的中位数是( )
A.2B.5C.8D.9
4、下列做法正确的是( )
A.在嫦娥五号着陆器发射前,对其零件的检测采用抽样调查
B.本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成扇形统计图
C.为了调查宣城市七年级学生的体重情况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本
D.绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度
5、小明在七年级第二学期的数学成绩如下表.如果按如图所示的权重计算总评得分,那么小明该学期的总评得分为( )
A.86分B.87分C.88分D.89分
6、在“支援河南洪灾”捐款活动中,某班级8名同学积极捐出自己的零花钱,奉献爱心,他们捐款的数额分别是(单位:元):60,25,60,30,30,25,65,60.这组数据的众数和中位数分别是( )
A.60,30B.30,30C.25,45D.60,45
7、有一组数据:1,2,3,3,4.这组数据的众数是( )
A.1B.2C.3D.4
8、数据处理过程中,以下顺序正确的是( )
A.收集数据→整理数据→描述数据→分析数据
B.收集数据→整理数据→分析数据→描述数据
C.收集数据→分析数据→整理数据→描述数据
D.收集数据→分析数据→描述数据→整理数据
9、已知一组数据:2,0,,4,2,.这组数据的众数和中位数分别是( )
A.2,1.5B.2,-1C.2,1D.2,2
10、为了交接某校2000名学生的数学成绩,抽取了其中50名学生的数学成绩进行整理分析,这个调查过程中的样本是( )
A.2000名学生的数学成绩B.2000
C.被抽取的50名学生的数学成绩D.50
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若一组数据85、x、80、90、95的平均数为85,则x的值为________.
2、开学前,根据学校防疫要求,小芸同学连续14天进行了体温测量,结果统计如表:
这14天中,小芸体温的中位数和众数分别是___________℃.
3、在篮球比赛中,某队员连续10场比赛中每场的得分情况如下表所示:
则这10场比赛中他得分的中位数和众数分别是_________.
4、甘肃省白银市广播电视台欲招聘播音员一名,对甲、乙两名候选人进行了两项素质测试,两人的两项测试成绩如下表所示:
根据需要广播电视台将面试成绩、综合知识测试成绩按3∶2的比例确定两人的最终成绩,那么_______将被录取.
5、一个扇形统计图中,某部分占总体的百分比为13%,则该部分所对扇形圆心角为______.
三、解答题(5小题,每小题10分,共计50分)
1、某商场设立了一个可以自由转动的转盘(如图所示),并规定:顾客购买10元以上的商品就能获得一次转动转盘的机会,当转盘停止时,指针落在哪个区域就可以获得相应的奖品.下表所示的是活动进行中的一组数据:
(1)请估计当m很大时,落在“牙膏”区域的频率将会接近多少?(精确到0.1)
(2)假如你去转动转盘一次,你获得洗衣液的概率大约是多少?(精确到0.1)
(3)在该转盘中,标有“牙膏”区域的扇形圆心角大约是多少度?(精确到1)
2、在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:
(1)请将条形统计图补充完整;
(2)在扇形统计图中,C部分所对应的圆心角等于 度;
(3)你觉得哪一类礼盒销售最快,请说明理由.
3、乒乓球,被称为“国球”,在中华大地有着深厚的群众基础.2000年2月23日,国际乒联特别大会决定从2000年10月1日起,乒乓球比赛将使用直径40mm、重量2.7g的大球,以取代38mm的小球.某工厂按要求加工一批标准化的直径为40mm乒乓球,但是实际生产的乒乓球直径可能会有一些偏差.随机抽查检验该批加工的10个乒乓球直径并记录如下:﹣0.4,﹣0.2,﹣0.1,﹣0.1,﹣0.1,0,+0.1,+0.2,+0.3,+0.5(“+”表示超出标准;“﹣”表示不足标准).
(1)其中偏差最大的乒乓球直径是 mm;
(2)抽查的这10个乒乓球中,平均每个球的直径是多少mm?
(3)若误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品,这10个球的合格率是 ;良好率是 .
4、某鞋厂为了了解初中学生穿鞋的尺码情况,对某中学八年级(1)班的20名男生进行了调查,结果如图所示.
(1)写出这20个数据的平均数、中位数、众数;
(2)在平均数、中位数和众数中,鞋厂最感兴趣的是哪一个?
5、某单位要招聘1名英语翻译,甲、乙两人报名参加了4项素质测试,成绩如下(单位:分):
如果把听、说、读、写的成绩按3:3:2:2计算素质测试平均成绩,那么谁的平均成绩高?请说明理由.
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
根据中位数的求法:把数据按从小到大或从大到小排列,处于中间的数据即为该组数据的中位数,当数据个数为偶数时,则取中间两个数的平均值,当数据个数为奇数时,则取中间的数据,由此可求解.
【详解】
解:一组数据中的中位数只有一个;
故选A.
【点睛】
本题主要考查中位数,熟练掌握中位数的求法是解题的关键.
2、C
【解析】
【分析】
根据题意可得:由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
解:由于总共有15个人,第8位选手的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.
故选:C.
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
3、B
【解析】
【分析】
先将数据按从小到大排列,取中间位置的数,即为中位数.
【详解】
解:将改组数据从小到大排列得:2,5,5,5,8,8,9,
中间位置的数为:5,所以中位数为5.
故选:B.
【点睛】
本题主要是考查了中位数的定义,熟练掌握地中位数的定义,是求解该类问题的关键.
4、D
【解析】
【分析】
根据抽样调查与全面调查的概念、扇形统计图、条形统计图、折线统计图的优势,抽样调查中样本的代表性逐一判断即可.
【详解】
解:A.在嫦娥五号着陆器发射前,对其零件的检测采用全面调查,故此选项错误,不合题意;
B.本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成折线统计图,故此选项错误,不合题意;
C.为了调查宣城市七年级学生的体重情况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本不具有代表性,故此选项错误,不合题意;
D.绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度,此选项正确,符合题意.
故选:D
【点睛】
本题考查了抽样调查与全面调查的特点,统计图的特点,抽样调查样本的选择等情况,熟知相关知识并根据题意灵活应用是解题关键.
5、B
【解析】
【分析】
根据加权平均数的公式计算即可.
【详解】
解:小明该学期的总评得分=分.
故选项B.
【点睛】
本题考查加权平均数,掌握加权平均数公式是解题关键.
6、D
【解析】
【分析】
根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可.
【详解】
解:60出现了3次,出现的次数最多,
则众数是60元;
把这组数据从小到大排列为:25,25,30,30,60,60,60,65,
则中位数是=45(元).
故选:D.
【点睛】
此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),熟记定义是解题关键.
7、C
【解析】
【分析】
找出数据中出现次数最多的数即可.
【详解】
解:∵3出现了2次,出现的次数最多,
∴这组数据的众数为3;
故选:C.
【点睛】
此题考查了众数.众数是这组数据中出现次数最多的数.
8、A
【解析】
【分析】
根据数据处理的基本过程是:收集,整理,描述,分析数据即可解答.
【详解】
解:数据处理的基本过程是:收集,整理,描述,分析数据,
故选:A.
【点睛】
本题考查整理数据的过程,解题的关键是理解并牢记整理数据的过程.
9、C
【解析】
【分析】
根据众数和中位数的求解方法解答即可.
【详解】
解:把这组数据从小到大排列:,,0,2,2,4.
∴中位数=,
∵数字2有2个,其他数字都是只有一个,
∴众数是2.
故选:C.
【点睛】
此题考查了众数和中位数,解题的关键是熟练掌握众数和中位数的求解方法.
10、C
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.
【详解】
解:A、2000名学生的数学成绩是总体,故选项不合题意;
B、2000是个体的数量,故选项不合题意;
C、这50名学生的数学成绩是总体的一个样本,故选项符合题意;
D、50是样本容量,故选项不合题意;
故选C
【点睛】
本题主要考查了总体、个体、样本和样本容量的定义,解题要分清具体问题中的总体、个体与样本的区别,关键是明确考查对象的范围.样本容量只是个数字,没有单位.
二、填空题
1、75
【解析】
【分析】
只要运用求平均数公式即可求出.
【详解】
由题意知,(85+x+80+90+95)=85,
解得x=75.
故填75.
【点睛】
本题考查了平均数的概念.熟记公式是解决本题的关键.
2、36.5,36.6
【解析】
【分析】
根据中位数的定义:一组数据从小到大(或从大到小)排列,若数据有奇数个,则最中间的数为中位数,若数据有偶数个,则最中间两数的平均数为中位数,根据众数的定义:一组数据出现次数最多的数,即可判断.
【详解】
共有14个数据,其中第7、8个数据均为36.5,
这组数据的中位数为36.5;
其中36.6出现了4次,出现次数最多,
众数为36.6.
【点睛】
本题考查了中位数和众数,理解中位数和众数的定义是解题的关键.
3、10,4
【解析】
【分析】
先将这10场比赛中每场的得分按从小到大排列,可得位于第5位和第6位的分别为7,13,即可求出中位数,4出现的次数最多,即可得到众数.
【详解】
解:将这10场比赛中每场的得分按从小到大排列为:4,4,4,6,7,13,13,16,19,38,则位于第5位和第6位的分别为7,13,
所以中位数为 ;
4出现了3次,出现的次数最多,所以众数为4.
故答案为:10,4.
【点睛】
本题主要考查了求一组数据的中位数和众数,熟练掌握中位数是将一组数据按从小到大排列,位于正中间的一个数或两个数的平均数;众数是一组数据中出现次数最多的数是解题的关键.
4、乙
【解析】
【分析】
分别求出两人的成绩的加权平均数,即可求解.
【详解】
解:甲候选人的最终成绩为: ,
乙候选人的最终成绩为: ,
∵ ,
∴乙将被录取.
故答案为:乙
【点睛】
本题主要考查了求加权平均数,熟练掌握加权平均数的求法是解题的关键.
5、46.8°
【解析】
【分析】
利用占总体的百分比是,则这部分的圆心角是360度的,即可求出结果.
【详解】
解:该部分所对扇形圆心角为:.
故答案为:.
【点睛】
本题考查扇形统计图中扇形所对圆心角的度数与百分比的关系,熟练掌握扇形所对圆心角的计算方法是解题关键.
三、解答题
1、(1)0.7;(2)0.3;(3)252°.
【解析】
【分析】
(1)根据频率的定义,可得当m很大时,频率将会接近其概率;
(2)根据概率的求法计算即可;
(3)根据扇形图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比计算即可.
【详解】
解:(1)当m很大时,频率将会接近0.7;
(2)获得洗衣液的概率大约是1-0.70=0.3;
(3)扇形的圆心角约是0.7×360°=252°.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.用到的知识点为:频率=所求情况数与总情况数之比.
2、(1)见解析;(2)72;(3)A类礼盒销售最快,理由见解析
【解析】
【分析】
(1)求出销售的C类礼盒的数量,即可补全条形统计图;
(2)C类礼盒相应圆心角的度数为360°乘以所占的百分比即可;
(3)比较四类礼盒销售的数量即可得出答案.
【详解】
解:(1)1000×50%-168-80-150=102(盒),补全条形统计图如图所示:
(2)360°×(1-35%-25%-20%)=72°,
故答案为:72;
(3)在相同的时间内,A类礼盒共销售168盒,B类礼盒共销售80盒,C类礼盒共销售102盒,A类礼盒共销售150盒,
因此,A类礼盒销售最快.
【点睛】
本题考查条形统计图、扇形统计图,理解统计图中各个数量之间的关系是解决问题的关键.
3、(1);(2);(3),
【解析】
【分析】
(1)根据题意列式计算即可;
(2)根据平均数的定义即可得到结论;
(3)根据误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品分别占总数的百分比,即可求解.
【详解】
解:(1)其中偏差最大的乒乓球的直径是
故答案为
(2)这10乒乓球平均每个球的直径是
故答案为
(3)这些球的合格率是
良好率为
故答案为,
【点睛】
此题考查了正数和负数的意义,解题的关键是理解正和负的相对性,明确什么是一对具有相反意义的量.
4、(1)平均数为39.1码,中位数为39码,众数为40码;(2)鞋厂最感兴趣的是众数
【解析】
【分析】
(1)根据平均数、众数与中位数的定义求解分析.40出现的次数最多为众数,第10、11个数的平均数为中位数.
(2)鞋厂最感兴趣的是使用的人数,即众数.
【详解】
解:(1)平均数=(37×3+38×4+39×4+40×7+41×1+42×1)÷20=39.1.
观察图表可知:有7人的鞋号为40,人数最多,即众数是40;
中位数是第10、11人的平均数,(39+39)÷2=39,
故答案为:平均数为39.1码,中位数为39码,众数为40码;
(2)鞋厂最感兴趣的是使用的人数,即众数,
故答案为:鞋厂最感兴趣的是众数.
【点睛】
本题考查平均数,众数与中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.正确理解中位数、众数及平均数的概念,是解决本题的关键.
5、甲的平均成绩高,见解析
【解析】
【分析】
根据加权平均数的定义列式计算即可求解.
【详解】
解:甲的平均成绩高,
∵甲的平均成绩:90×3+80×3+85×2+78×23+3+2+2=83.6(分),
乙的平均成绩:78×3+82×3+85×2+88×23+3+2+2=82.6(分),
83.6>82.6,
∴甲的平均成绩高.
【点睛】
本题考查的是加权平均数的求法,要注意各部分的权重与相应的数据的关系,熟记运算方法是解题的关键.
姓名
平时
期中
期末
总评
小明
90
90
85
体温(℃)
36.3
36.4
36.5
36.6
36.7
36.8
天数(天)
2
3
3
4
1
1
场次(场)
1
2
3
4
5
6
7
8
9
10
得分(分)
13
4
13
16
6
19
4
4
7
38
测试项目
测试成绩
甲
乙
面试
90
95
综合知识测试
85
80
转动转盘的次数
100
150
200
500
800
1000
落在“牙膏”区域的次数
68
111
136
345
564
701
落在“牙膏”区域的频率
0.68
0.74
0.68
0.69
0.705
0.701
听
说
读
写
甲
90
80
85
78
乙
78
82
85
88
相关试卷
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后测评,共20页。试卷主要包含了下列说法中正确的是,下列调查中,适合用普查方式的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试测试题,共19页。试卷主要包含了数据,,,,,的众数是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试同步达标检测题,共16页。试卷主要包含了某中学七,下列调查中,最适合采用全面调查等内容,欢迎下载使用。