初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试巩固练习
展开京改版七年级数学下册第九章数据的收集与表示定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、数据处理过程中,以下顺序正确的是( )
A.收集数据→整理数据→描述数据→分析数据
B.收集数据→整理数据→分析数据→描述数据
C.收集数据→分析数据→整理数据→描述数据
D.收集数据→分析数据→描述数据→整理数据
2、如图为成都市部分区县森林覆盖率统计图.其中,森林覆盖率低于的区县有( )
A.1个 B.2个 C.3个 D.4个
3、班长王亮依据今年月“书香校园”活动中全班同学的课外阅读数量单位:本,绘制了如图折线统计图,下列说法正确的是( )
A.每月阅读数量的平均数是 B.众数是
C.中位数是 D.每月阅读数量超过的有个月
4、数据2,5,5,7,x,3的平均数是4,则中位数是( )
A.6 B.5 C.4.5 D.4
5、小明前3次购买的西瓜单价如图所示,若第4次买的西瓜单价是元/千克,且这4个单价的中位数与众数相同,则a 的值为( )
A.5 B.4 C.3 D.2
6、为了解学生参加体育锻炼的情况、现将九年级(1)班同学一周的体育锻炼情况绘制成如图所示不完整的条形统计图,已知锻炼7小时的人数占全班总人数的20%,则下列结论正确的是( )
A.九年级(1)班共有学生40名 B.锻炼时间为8小时的学生有10名
C.平均数是8.5小时 D.众数是8小时
7、为了解某校初一年级1200名学生每天花费在数学学习上的时间,抽取了100名学生进行调查,以下说法正确的是( )
A.1200名学生每天花费在数学学习上的时间是总体 B.每名学生是个体
C.从中抽取的100名学生是样本 D.样本容量是100名
8、某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,88,则小彤这学期的体育成绩为( )
A.89 B.90 C.91 D.92
9、下列说法中正确的是( )
A.样本7,7,6,5,4的众数是2
B.样本2,2,3,4,5,6的中位数是4
C.样本39,41,45,45不存在众数
D.5,4,5,7,5的众数和中位数相等
10、5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是( )
A.7 B.8 C.9 D.10
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、数据1,2,4,5,2的众数是 _____.
2、年末,我国完成了第次人口普查,国家统计局采取的调查方式是_______.(填“全面调查”“抽样调查”)
3、某班同学进行知识竞赛,将所得成绩整理成如图所示的统计图,则这次竞赛成绩的众数是_____分.
4、某招聘考试分笔试和面试两项,笔试成绩和面试成绩按3:2计算平均成绩.若小明笔试成绩为85分,面试成绩为90分,则他的平均成绩是______分.
5、检查一箱装有2500件包装食品的质量,按2%的抽查率抽查其中一部分的质量,在这个问题中,总体是________,样本是________.
三、解答题(5小题,每小题10分,共计50分)
1、为响应“双减”政策,老师们都精心设计每天的作业,兴华学校调查了部分学生每天完成作业所用时间,并用得到的数据绘制了如下不完整的统计图,根据图中信息完成下列问题:
(1)将条形统计图补充完整;
(2)抽查学生完成作业所用时间的众数是______;
(3)求所有被抽查学生完成作业所用的平均时间.
2、西安市某中学为了搞好“创建全国文明城市”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,X表示测试成绩)通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:
(1)将条形统计图补充完整;
(2)本次调查测试成绩中的中位数落在______组内;
(3)若测试成绩在80分以上(含80分)为优秀,有学生3600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.
3、某条小河平均水深1.3m,一个身高1.6m的小孩在这条河里游泳是否一定没有危险?
4、在学校内随机调查20位男同学所穿运动鞋的尺码,计算它们的平均数.
5、某校开设了丰富多彩的实践类拓展课程,分别设置了体育类、艺术类、文学类及其它类课程(要求人人参与,每人只能选择一门课程).为了解学生喜爱的拓展类别,学校做了一次抽样调查.根据收集到的数据绘制成以下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:
(1)直接在图①中补全条形统计图;
(2)图②中其它类课程所对应扇形的圆心角是 度(直接填空);
(3)若该校有1500名学生,请估计喜欢文学类课程的学生有多少人?
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
根据数据处理的基本过程是:收集,整理,描述,分析数据即可解答.
【详解】
解:数据处理的基本过程是:收集,整理,描述,分析数据,
故选:A.
【点睛】
本题考查整理数据的过程,解题的关键是理解并牢记整理数据的过程.
2、B
【解析】
【分析】
根据直方图即可求解.
【详解】
由图可得森林覆盖率低于的区县有新津县、青白江,共2个
故选B.
【点睛】
此题主要考查统计图的判断,解题的关键是根据直方图找到森林覆盖率低于的区县,进而求解.
3、D
【解析】
【分析】
根据平均数的计算方法,可判断A;根据众数的定义,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.
【详解】
解:A、每月阅读数量的平均数是,故A错误,不符合题意;
B、出现次数最多的是,众数是,故B错误,不符合题意;
C、由小到大顺序排列数据,中位数是,故C错误,不符合题意;
D、由折线统计图看出每月阅读量超过的有个月,故D正确,符合题意;
故选:D.
【点睛】
本题考查了折线统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.折线统计图表示的是事物的变化情况.注意求中位数先将该组数据按从小到大或按从大到小的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.
4、D
【解析】
【分析】
先计算出x的值,再根据中位数的定义解答.
【详解】
解:∵2,5,5,7,x,3的平均数是4,
∴,
∴x=2,
数据有小到大排列为2,2,3,5,5,7,
∴中位数是,
故选:D.
【点睛】
此题考查已知平均数求某一数据,求中位数,根据平均数的公式求出未知数的值是解题的关键.
5、C
【解析】
【分析】
根据统计图中的数据和题意,可以得到的值,本题得以解决.
【详解】
解:由统计图可知,前3次的中位数是3,
第4次买的西瓜单价是元千克,这四个单价的中位数恰好也是众数,
,
故选:C.
【点睛】
本题考查条形统计图、中位数、众数,解题的关键是明确题意,利用数形结合的思想解答.
6、D
【解析】
【分析】
根据频数之和等于总数,频数定义,加权平均数的计算,众数的定义逐项判断即可求解.
【详解】
解:A. 九年级(1)班共有学生10+20+15+5=50名,故原选项判断错误,不合题意;
B. 锻炼时间为8小时的学生有20名,故原选项判断错误,不合题意;
C. 平均数是小时,故原选项判断错误,不合题意;
D. 众数是8小时,故原选项判断正确,符合题意.
故选:D
【点睛】
本题考查了频数、加权平均数、众数等知识,理解相关概念,看到条形图是解题关键.
7、A
【解析】
【分析】
根据总体的定义:表示考察的全体对象;样本的定义:按照一定的抽样规则从总体中取出的一部分个体,样本中个体的数目称为样本容量;个体的定义:总体中每个成员成为个体,进行逐一判断即可.
【详解】
解:A、1200名学生每天花费在数学学习上的时间是总体,故此选项符合题意;
B、每名学生每天花费在数学学习上的时间是个体,故此选项不符合题意;
C、从中抽取的100名学生每天花费在数学学习上的时间是样本,故此选项不符合题意;
D、样本容量是100,故此选项不符合题意;
故选A.
【点睛】
本题主要考查了样本,总体,个体和样本容量的定义,解题的关键在于熟知定义.
8、B
【解析】
【分析】
根据加权平均数的计算公式列出算式,再进行计算即可.
【详解】
解:根据题意得:
95×20%+90×30%+88×50%=90(分).
即小彤这学期的体育成绩为90分.
故选:B.
【点睛】
此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.
9、D
【解析】
【分析】
根据众数定义和中位数定义对各选项进行一一分析判定即可.
【详解】
A. 样本7,7,6,5,4的重复次数最多的数是7,所以众数是7,故选项A不正确;
B. 样本2,2,3,4,5,6的处于中间位置的两个数是3和4,所以中位数是,故选项B不正确;
C. 样本39,41,45,45重复次数最多的数字是45,故选项C不正确;
D. 5,4,5,7,5,将数据重新排序为4,5,5,5,7,重复次数最多的众数是5和中位数为5,所以众数和中位数相等,故选项D正确.
故选D.
【点睛】
本题考查众数与中位数,掌握众数与中位数定义,一组数据中重复次数最多的数据是众数,将一组数据从小到大排序后,处于中间位置,或中间位置上两个数据的平均数是中位数是解题关键.
10、C
【解析】
【分析】
设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.
【详解】
解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,
所以有x﹣12+x=2×3,
解得x=9.
故选:C.
【点睛】
此题考查了平均数和一元一次方程的应用,解题的关键是正确分析题目中的等量关系列方程求解.
二、填空题
1、2
【解析】
【分析】
找出出现次数最多的数是众数.
【详解】
解:数据1,2,4,5,2中,2出现的次数最多,是2次,因此众数是2.
故答案为:2.
【点睛】
本题考查众数的意义及求法,在一组数据中出现次数最多的数是众数.
2、全面调查
【解析】
【分析】
根据全面调查和抽样调查的概念判断即可.
【详解】
解:为了全面的、可靠的得到我国人口信息,
所以国家统计局采取的调查方式是全面调查,
故答案为:全面调查.
【点睛】
本题考查的是全面调查和抽样调查,解题的关键是掌握通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其一,调查者能力有限,不能进行普查,其二,调查过程带有破坏性,其三,有些被调查的对象无法进行普查.
3、70
【解析】
【分析】
根据众数的定义:出现次数最多的数据为众数即可求解.
【详解】
由统计图可得这次竞赛成绩的众数是70分
故答案为70.
【点睛】
此题主要考查统计调查的应用,解题的关键是熟知众数的定义.
4、87
【解析】
【分析】
按照加权平均数的计算公式计算即可.
【详解】
根据加权平均数的计算公式列出算式,再进行计算即可得出答案.
解:小明的平均成绩是:=87(分).
故答案为:87.
【点睛】
本题考查了加权平均数的应用,掌握加权平均数的意义及计算是关键.
5、 2500件包装食品的质量 所抽取的50件包装食品的质量
【解析】
【分析】
根据总体是指考查的对象的全体,样本是总体中所抽取的一部分个体即可解答.
【详解】
解:检查一箱装有2500件包装食品的质量,按2%的抽查率抽查其中一部分的质量,在这个问题中,总体是2500件包装食品的质量,样本是抽取的%=50件包装食品的质量,
故答案为:2500件包装食品的质量;所抽取的50件包装食品的质量.
【点睛】
本题考查了总体、样本的概念,解题要分清具体问题中的总体与样本,关键是明确考查的对象.总体与样本的考查对象是相同的,所不同的是范围的大小.掌握总体、样本的概念是解题关键.
三、解答题
1、(1)见解析;(2);(3)小时
【解析】
【分析】
(1)根据每天完成作业所用的平均时间为1小时的占30%,共30人,即可求得总人数;根据总数减去其他三项即可求得每天完成作业所用的平均时间为1.5小时的人数进而补充条形统计图;
(2)根据条形统计图可知完成作业所用的平均时间为1.5小时的人数最多;
(3)根据求平均数的方法,求得100个完成作业所用时间的平均数
【详解】
(1)总人数为:(人);
每天完成作业所用的平均时间为1.5小时的人数为:(人)
补充条形统计图如下:
(2)根据条形统计图可知完成作业所用的平均时间为1.5小时的人数最多,故学生每天完成作业所用的平均时间的众数为1.5,
(3)被抽查学生完成作业所用的平均时间为小时
【点睛】
本题考查了条形统计图与扇形统计图信息关联,求众数、平均数,从统计图中获取信息是解题的关键.
2、(1)见解析;(2)B;(3)1620人.
【解析】
【分析】
(1)先由A组人数及其所占百分比求出总人数,总人数乘以B组对应百分比即可求出其人数,从而补全图形;
(2)根据中位数的定义求解;
(3)总人数乘以样本A、B组对应百分比之和即可.
【详解】
解:(1)因为被调查的总人数为40÷10%=400(人)
所以B组人数为400×35%=140(人),
补全图形如下,
(2)因为一共有400个数据,其中位数是第200,201个数据的平均数,而这两个数据均落在B组,即本次调查测试成绩中的中位数落在B组,
故答案为:B;
(3)估计全校学生测试成绩为优秀的总人数为3600×(10%+35%)=1620(人)
答:估计全校学生测试成绩为优秀的总人数为1620人.
【点睛】
本题考查条形统计图与扇形统计图的综合应用、样本估计总体,难度一般,掌握相关知识是解题关键.
3、可能有危险
【解析】
【分析】
根据平均数的意义可知1.3m只是水深的平均水平,有深度大于1.3m的,也有深度小于1.3m的地方,据此解答即可.
【详解】
解:可能有危险.因为1.3m只是水深的平均水平,并不能说明具体各个地点的深度,可能各个地点的水深有很大的差异,如可能有的地方水深超过1.6m,甚至更深.
【点睛】
本题考查了平均数的意义,理解平均数的代表的含义是解本题的关键.设计本题,旨在通过具体情境让学生进一步感受平均数的实际意义.
4、39.1
【解析】
【分析】
根据加权平均数的定义求解分析.
【详解】
解:在学校内随机调查20位男同学所穿运动鞋的尺码,结果如图所示:
则平均数=(37×3+38×4+39×4+40×7+41×1+42×1)÷20=39.1.
【点睛】
本题考查加权平均数,加权平均数是指在一组数据中所有数据之和再除以数据的个数,掌握算数平均数是解题关键.
5、(1)见解析;(2)36;(3)450
【解析】
【分析】
(1)结合两个统计图,根据体育类80人所占的百分比是40%,计算出总人数,利用总人数乘以20%求得参加艺术社团的人数,再求得参加其它社团的人数,补全条形统计图;
(2)利用360°乘以参加其它类课程的所占的比例求得圆心角的度数;
(3)求出文学类所占的百分比,再用1500乘以百分比估计即可.
【详解】
(1)调查的总人数是80÷40%=200(人),
参加艺术社团的人数是200×20%=40(人),
参加其它社团的人数200−80−40−60=20(人),
∴补全条形统计图如下:
(2)它类课程在扇形统计图中所占圆心角的度数是,
故答案为:36;
(3)(人),
∴估计该校喜欢文学类课程的学生450人.
【点睛】
此题考查扇形统计图,条形统计图,解题关键在于看懂图中数据.
初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试综合训练题: 这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试综合训练题,共18页。试卷主要包含了下列问题不适合用全面调查的是,下列调查适合作抽样调查的是,下列调查中,最适合采用全面调查等内容,欢迎下载使用。
初中第九章 数据的收集与表示综合与测试课时训练: 这是一份初中第九章 数据的收集与表示综合与测试课时训练,共18页。
北京课改版七年级下册第九章 数据的收集与表示综合与测试测试题: 这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试测试题,共18页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。