数学第九章 数据的收集与表示综合与测试当堂检测题
展开京改版七年级数学下册第九章数据的收集与表示综合练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、山西被誉为“表里山河”,意思是:外有大河,内有高山.下表是我省11个地市最高峰高度的统计结果,其中最高峰高度的中位数是( )
城市 | 太原 | 大同 | 阳泉 | 长治 | 晋城 | 临汾 | 运城 | 吕梁 | 晋中 | 忻州 | 朔州 |
最高峰高度(米) | 2789 | 2420 | 1874 | 2523 | 2358 | 2504.3 | 2358 | 2831 | 2566.6 | 3061.1 | 2333 |
A.2420米 B.2333米 C.2504.3米 D.2566.6米
2、下列采用的调查方式中,不合适的是
A.了解一批灯泡的使用寿命,采用普查
B.了解神舟十二号零部件的质量情况,采用普查
C.了解单县中学生睡眠时间,采用抽样调查
D.了解中央电视台《开学第一课》的收视率,采用抽样调查
3、在今年中小学全面落实“双减”政策后小丽同学某周每天的睡眠时间为(单位:小时):8,9,7,9,7,8,8,则小丽该周每天的平均睡眠时间是( )
A.7小时 B.7.5小时 C.8小时 D.9小时
4、在“支援河南洪灾”捐款活动中,某班级8名同学积极捐出自己的零花钱,奉献爱心,他们捐款的数额分别是(单位:元):60,25,60,30,30,25,65,60.这组数据的众数和中位数分别是( )
A.60,30 B.30,30 C.25,45 D.60,45
5、对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中不正确的结论有( )
A.1个 B.2个 C.3个 D.4个
6、为庆祝中国共产党建党一百周年,某班50名同学进行了党史知识竞赛,测试成绩统计如表,其中有两个数据被遮盖.
成绩/分 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
人数 | ■ | ■ | 1 | 2 | 3 | 5 | 6 | 8 | 10 | 12 |
下列关于成的统计量中、与被遮盖的数据无关的是( )
A.平均数 B.中位数
C.中位数、众数 D.平均数、众数
7、要调查下列问题,适合采用普查的是( )
A.中央电视台《开学第一课》的收视率 B.某城市居民6月份人均网上购物的次数
C.即将发射的气象卫星的零部件质量 D.银川市中小学生的视力情况
8、鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的( )
A.平均数 B.众数 C.中位数 D.众数或中位数
9、在某次比赛中,有10位同学参加了“10进5”的淘汰赛,他们的比赛成绩各不相同.其中一位同学要知道自己能否晋级,不仅要了解自己的成绩,还需要了解10位参赛同学成绩的( )
A.平均数 B.加权平均数 C.众数 D.中位数
10、在我校“文化艺术节”英语表演比赛中,有16名学生参加比赛,规定前8名的学生进入决赛,某选手想知道自己能否晋级,只需要知道这16名学生成绩的( )
A.中位数 B.方差 C.平均数 D.众数
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》已于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了900名居民进行调查,并将调查结果制作成了如下不完整的统计图和表:
听说过 | 不知道 | 清楚 | 非常清楚 |
A | B | 225 | C |
根据以上信息求得“非常清楚”所占扇形的百分比为__%.
2、某校有3000名学生,随机抽取了300名学生进行体重调查.该问题中样本是_______________.
3、某项比赛对专业和才艺两方面评分的权重分别设为80%和20%.A同学专业得分为90分,才艺得分为80分,A同学的平均分是 _____分.
4、若、、的平均数为,则、、的平均数为______.
5、下列调查中,用全面调查方式收集数据的有________.
①为了了解学生对任课教师的意见,学校要求全体学生网上匿名评价教师;
②为了了解初中生上网情况,某市团委对10所初中的部分学生进行调查;
③某班拟组织一次春游活动,为了确定春游的地点,向全班同学进行调查;
④为了了解全班同学的作业完成情况,对学号为奇数的学生进行调查.
三、解答题(5小题,每小题10分,共计50分)
1、某超市招聘收银员一名.对三名申请人进行了三项素质测试.三名候选人的素质测试成绩如右表.公司根据实际需要,对计算机、语言、商品知识三项测试成绩分别赋予权4,3,2,这三人中谁将被录用?
素质测试 | 测试成绩/分 | ||
小赵 | 小钱 | 小孙 | |
计算机 | 70 | 90 | 65 |
语言 | 50 | 75 | 55 |
商品知识 | 80 | 35 | 80 |
2、为了了解某地区60~75岁的老年人的锻炼情况,利用公安机关户籍网,随机电话调查了该区60~75岁的300名老人平均每天的锻炼时间,整理得到下面的表格:
平均每天锻炼时间 | 人数 | 占被调查数的百分比 | ||
男 | 女 | 合计 | ||
1h以内(含1h) | 43 | 83 | 126 | 42% |
1-2h(含2h) | 20 | 28 | 48 | 16% |
2h以上 | 7 | 5 | 12 | 4% |
不参加锻炼 | 77 | 37 | 114 | 38% |
合计 | 147 | 153 | 300 | 100% |
(1)男性老年人参加锻炼的人数有________人,女性老年人参加锻炼的人数有________人,老年人中,参加锻炼的占被调查者的________%;
(2)不参加锻炼的老年人中,男性大约是女性的几倍?
(3)根据此表数据分析,你对该区老年人的锻炼情况有什么建议吗?
(4)对本题的课题进行调查时,如果清晨到公园或市人民广场询问300名老年人,或在某居民小区调查10名老年人,你认为这样得到的数据,可以作为调查分析、得出结论的依据吗?请说明理由.
3、为了了解某校学生的身高情况随机抽取该校男生,女生进行抽样调查,已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表.身高情况分组表(单位:cm)
组别 | 身高 |
A | x<160 |
B | 160≤x<165 |
C | 165≤x<170 |
D | 170≤x<175 |
E | x≥175 |
根据图表提供的信息,回答下列问题:
(1)样本中,男生的身高众数在 组,中位数在 组.
(2)样本中,女生身高在E组的人数有 人.
(3)已知该校共有男生600人,女生480人,请估计身高在165≤x<175之间的学生约有多少.
4、下图反映了九年级两个班的体育成绩.
(1)不用计算,根据条形统计图,你能判断哪个班学生的体育成绩好一些吗?
(2)你能从图中观察出各班学生体育成绩等级的“众数”吗?
(3)依次将不及格、及格、中、良好、优秀记为55分,65分,75分,85分,95分,先分别估算一下两个班学生体育成绩的平均值,再算一算,看看你估计的结果怎么样.
(4)九年级(1)班学生体育成绩的平均数、中位数和众数有什么关系?你能说说其中的理由吗?
5、八年级一班共有学生46人,学生的平均身高是1.58m,小明身高1.59m,但小明说他的身高在全班是中等偏下的,班上有25位同学比他高,20位同学比他矮,这可能吗?
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
根据中位数的定义求解即可,中位数是将一组数据从小到大重新排列后,最中间的那个数(或最中间两个数的平均数).
【详解】
把这11个数从小到大排列为:
1874,2333,2358,2358,2420,2504.3,2523,2566.6,2789,2831,3061.1,
共有11个数,
中位数是第6个数2504.3,
故选:C.
【点睛】
此题考查了中位数,属于基础题,熟练掌握中位数的定义是解题关键.
2、A
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.
【详解】
解:A、了解一批灯泡的使用寿命,采用抽样调查,本选项说法不合适,符合题意;
、了解神舟十二号零部件的质量情况,采用普查,本选项说法合适,不符合题意;
、了解单县中学生睡眠时间,采用抽样调查,本选项说法合适,不符合题意;
、了解中央电视台《开学第一课》的收视率,采用抽样调查,本选项说法合适,不符合题意;
故选:A.
【点睛】
本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、C
【解析】
【分析】
根据平均数的定义列式计算即可求解.
【详解】
解:(8+9+7+9+7+8+8)÷7=8(小时).
故小丽该周平均每天的睡眠时间为8小时.
故选:C.
【点睛】
本题考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.
4、D
【解析】
【分析】
根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可.
【详解】
解:60出现了3次,出现的次数最多,
则众数是60元;
把这组数据从小到大排列为:25,25,30,30,60,60,60,65,
则中位数是=45(元).
故选:D.
【点睛】
此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),熟记定义是解题关键.
5、C
【解析】
【分析】
直接根据众数、中位数和平均数的定义求解即可得出答案.
【详解】
数据3出现了6次,次数最多,所以众数是3,故①正确;
这组数据按照从小到大的顺序排列为2,2,3,3,3,3,3,3,6,6,10,处于中间位置的是3,所以中位数是3,故②错误;
平均数为,故③、④错误;
所以不正确的结论有②、③、④,
故选:C.
【点睛】
本题主要考查众数、众数和平均数,掌握众数、中位数和平均数的定义是解题的关键.
6、C
【解析】
【分析】
通过计算成绩为91、92分的人数,进行判断,不影响成绩出现次数最多的结果,因此不影响众数,同时不影响找第25、26位数据,因此不影响中位数的计算,进而进行选择.
【详解】
解:由表格数据可知,成绩为91分、92分的人数为50-(12+10+8+6+5+3+2+1)=3(人),
成绩为100分的,出现次数最多,因此成绩的众数是100,
成绩从小到大排列后处在第25、26位的两个数都是98分,因此中位数是98,
因此中位数和众数与被遮盖的数据无关,
故选:C.
【点睛】
本题主要考查中位数、众数、方差、平均数的意义和计算方法,理解各个统计量的实际意义,以及每个统计量所反应数据的特征,是正确判断的前提.
7、C
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析各选项即可得到答案.
【详解】
解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;
B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;
C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;
D、调查银川市中小学生的视力情况,适合抽查,故本选项不合题意.
故选:C.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
8、B
【解析】
【分析】
由鞋厂关心的数据,即大众买的最多的鞋号,也就是出现次数最多的数据,从而可得所构成的数据是众数.
【详解】
解:生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的众数,
故选B
【点睛】
本题考查的是众数的含义及众数表示的意义,理解众数的含义及在生活中的应用是解本题的关键.
9、D
【解析】
【分析】
根据中位数的特点,参赛选手要想知道自己是否能晋级,只需要了解自己的成绩以及全部成绩的中位数即可.
【详解】
解:根据题意,由于总共有10个人,且他们的成绩各不相同,第5名和第6名同学的成绩的平均数是中位数,要判断是否能晋级,故应知道中位数是多少.
故选:D.
【点睛】
本题考查中位数,理解中位数的特点,熟知中位数是一组数据从小到大的顺序依次排列,处在最中间位置的的数(或最中间两个数据的平均数)是解答的关键.
10、A
【解析】
【分析】
根据中位数的意义进行求解即可.
【详解】
解:16位学生参加比赛,取得前8名的学生进入决赛,中位数就是第8、第9个数的平均数,
因而要判断自己能否晋级,只需要知道这16名学生成绩的中位数就可以.
故选:A.
【点睛】
本题考查了中位数的意义,掌握中位数的意义是解题的关键.
二、填空题
1、30
【解析】
【分析】
由“清楚”扇形所对应的圆心角可得其占总体的百分比,再根据各项百分比之和为1可得答案.
【详解】
解:∵“清楚”的人数占总人数的百分比为×100%=25%,
∴“非常清楚”扇形所占的百分比为1﹣(30%+15%+25%)=30%,
故答案为:30.
【点睛】
本题主要考查扇形统计图,掌握整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数是解题的关键.
2、300名学生的体重
【解析】
【分析】
根据样本就是从总体中抽取出一部分个体即可得出答案.
【详解】
解:某校有3000名学生,随机抽取了300名学生进行体重调查,该问题中,300名学生的体重是调查的样本.
故答案为:300名学生的体重.
【点睛】
本题考查样本的定义,即从总体中抽取的一部分个叫做总体的一个样本,用样本的特征去估计总体的特征,是常用的统计思想方法.
3、88
【解析】
【分析】
把每个分数与其权重相乘再相加即可得到加权平均数.
【详解】
解:根据题意得:
90×80%+80×20%=88(分),
答:A同学的平均分是88分.
故答案为:88.
【点睛】
本题考查加权平均数的求法,掌握计算方法是本题关键.
4、9
【解析】
【分析】
根据、、的平均数为7可得,再列出计算、、的平均数的代数式,整理即可得出答案.
【详解】
解:∵、、的平均数为7,
∴,
∴,
故答案为:9
【点睛】
本题考查计算平均数.掌握平均数的计算公式是解题关键.
5、①③
【解析】
【分析】
根据抽样调查和全面调查的特点依次分析各项即可判断.
【详解】
解:①为了了解全校学生对任课教师的意见,学校向全校学生进行问卷调查,属于全面调查;
②为了了解初中生上网情况,某市团委对10所初中的部分学生进行调查,属于抽样调查;
③某班学生拟组织一次春游活动,为了确定春游的地点,向同学进行调查,属于全面调查;
④了解全班同学的作业完成情况,对学号为奇数的学生进行调查,属于抽样调查;
故答案为:①③
【点睛】
本题是抽样调查和全面调查的基础应用题,是中考常见题,难度一般,主要考查学生对统计方法的认识.
三、解答题
1、小钱将被录用
【解析】
【分析】
分别计算出三人的加权平均数,比较即可得出结论.
【详解】
解:小赵的最终成绩:(分);
小钱的最终成绩:(分);
小孙的最终成绩:(分);
∵,
∴小钱将被录用.
【点睛】
本题考查加权平均数的实际应用,理解加权平均数的定义以及求解方法是解题关键.
2、(1)70,116,62;(2)2倍;(3)要增强该地区老年人“生命在于运动”的观念;(4)不可以,理由见解析
【解析】
【分析】
(1)观察表格可得出男性老年人和女性老年人参加锻炼的人数,由此进行解答;
(2)由表格可知不参加锻炼的老年人中,其中男性有77人,女性有37人,进而可得到男性人数和女性人数的倍数关系;
(3)此题答案不唯一,根据图表分析参加锻炼的人数不太多,可以就注重锻炼来分析;
(4)可以根据抽样调查中样本的代表性进行解答.
【详解】
解: (1)男性老年人参加锻炼的人数有43+20+7=70(人),女性参加锻炼的人数有83+28+5=116(人);老年人中,参加锻炼的占被调查者的.
(2)不参加锻炼的老年人中,其中男性有77人,女性有37人,故男性大约是女性的2倍.
(3)根据此表数据分析:不参加锻炼的老年人约占38%,可见该地区的老年人锻炼意识不强,尤其是男性老年人,只有半数的男性老年人参加锻炼,所以要增强该地区老年人“生命在于运动”的观念.
(4)不可以,因为,清晨到公园或市民广场的老年人都是注意锻炼的老年人,不能代表该区所有的老年入的锻炼情况,不具有广泛的代表性,即样本不具有代表性、广泛性,故这种调查方法得出的结论不符合实际.
【点睛】
本题考查抽样调查的知识,解题的关键是对表格进行正确分析进而得到答案.
3、(1)B,C;(2)2;(3)462人.
【解析】
【分析】
(1)根据众数出现次数最多,以及中位数为排列后中间的数据或中间两个数的平均数解答即可;
(2)先求出女生身高在E组所占的百分比,再求出总人数然后计算即可得解;
(3)分别用男、女生的人数乘以C、D两组的频率的和,计算即可得解.
【详解】
解:(1)∵直方图中,B组的人数为12,最多,
∴男生的身高的众数在B组,
男生总人数为:4+12+10+8+6=40,
按照从低到高的顺序,第20、21两人都在C组,
∴男生的身高的中位数在C组,
故答案为:B,C;
(2)女生身高在E组的百分比为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,
∵抽取的样本中,男生、女生的人数相同,
∴样本中,女生身高在E组的人数有:40×5%=2(人),
故答案为:2;
(3)600×+480×(25%+15%)=270+192=462(人).
答:该校身高在165≤x<175之间的学生约有462人.
【点睛】
本题考查的是频数分布直方图以及扇形统计图的应用,掌握用样本估计总体的方法、正确读懂扇形图的信息、理解中位数和众数的概念是解题的关键.
4、(1)九年级(2)班学生的体育成绩好一些;(2)均为“中”; (3)九年级(1)班的平均成绩为75分,九年级(2)班的平均成绩为78分;(4)三者相等,理由见解析
【解析】
【分析】
(1)根据条形图判断即可;
(2)根据众数的定义结合条形统计图即可判断;
(3)先估计,再根据加权平均数计算即可;
(4)根据条形统计图结合三者的定义解答即可.
【详解】
(1)九年级(2)班学生的体育成绩好一些.因为两班成绩等级中为“中”和“及格”的学生数分别相等,而九年级(2)班成绩等级为“优秀”和“良好”的学生数比九年级(1)班多,“不及格”的学生数比九年级(1)班少;
(2)两个班级学生成绩等级的“众数”均为“中”;
(3)估计九年级(1)班的平均成绩为75分,九年级(2)班的平均成绩为78分;
九年级(1)班的平均成绩为(5×55+10×65+75×20+10×85+5×95)÷50=75分,九年级(2)班的平均成绩为(1×55+65×10+75×20+85×11+95×8)÷50=78分;
和估计的结果相等;
(4)三者相等,这可以从“对称”的角度理解.当然,平均数、中位数、众数相等,相应的统计图未必都是“对称”的
【点睛】
本题考查了从统计图获取信息的能力,条形图能清楚地表示出每个项目的具体数目,同时要掌握平均数的计算方法、理解众数、中位数的意义.
5、可能
【解析】
【分析】
利用平均数与总体的关系来考虑.
【详解】
解:可能.
班上有25个同学比他高,即在平均线以下的同学占少数,但比小明高的同学的身高比平均身高高,可幅度不大,比小明低的同学的身高比平均身高低的幅度大,故还是有可能的.
【点睛】
本题不是直接求平均数,而是利用平均数的概念综合来分析,平均数受极值的影响较大.
七年级下册第九章 数据的收集与表示综合与测试练习题: 这是一份七年级下册第九章 数据的收集与表示综合与测试练习题,共17页。试卷主要包含了某教室9天的最高室温统计如下,下列调查中,适合用普查方式的是,已知一组数据等内容,欢迎下载使用。
数学七年级下册第九章 数据的收集与表示综合与测试当堂达标检测题: 这是一份数学七年级下册第九章 数据的收集与表示综合与测试当堂达标检测题,共19页。试卷主要包含了下列说法中正确的个数是个.,一组数据中的中位数等内容,欢迎下载使用。
数学七年级下册第九章 数据的收集与表示综合与测试单元测试同步达标检测题: 这是一份数学七年级下册第九章 数据的收集与表示综合与测试单元测试同步达标检测题,共19页。试卷主要包含了水果店内的5个苹果,其质量等内容,欢迎下载使用。