终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    难点解析沪科版九年级数学下册第24章圆专项训练试题

    立即下载
    加入资料篮
    难点解析沪科版九年级数学下册第24章圆专项训练试题第1页
    难点解析沪科版九年级数学下册第24章圆专项训练试题第2页
    难点解析沪科版九年级数学下册第24章圆专项训练试题第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第24章 圆综合与测试一课一练

    展开

    这是一份数学九年级下册第24章 圆综合与测试一课一练,共25页。
    沪科版九年级数学下册第24章圆专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在半径为6cm的圆中,的圆心角所对弧的弧长是(    A.cm B.cm C.cm D.cm2、如图,在中,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为(    A.1 B.2 C.3 D.43、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为(    A.1cm B.2cm C.3cm D.4cm4、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为(    A.30° B.60°C.90° D.120°5、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是(    A. B. C. D.6、下列图形中,可以看作是中心对称图形的是(    A. B. C. D.7、的边经过圆心与圆相切于点,若,则的大小等于(    A. B. C. D.8、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点AB的对应点分别为DE,连接AD.当点ADE在同一条直线上时,则∠BAD的大小是(  )A.80° B.70° C.60° D.50°9、若的圆心角所对的弧长是,则此弧所在圆的半径为(    A.1 B.2 C.3 D.410、下列图形中,既是中心对称图形又是抽对称图形的是(    A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在⊙O中,AB=10,BC=12,D上一点,CD=5,则AD的长为______.2、如图,在ABC中,∠C=90°,AB=10,在同一平面内,点O到点ABC的距离均等于aa为常数).那么常数a的值等于________.3、如图,PMPN分别与⊙O相切于AB两点,C为⊙O上异于AB的一点,连接ACBC.若∠P=58°,则∠ACB的大小是___________.4、如图,正六边形ABCDEF内接于⊙O,若⊙O的周长为8π,则正六边形的边长为________. 5、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留三、解答题(5小题,每小题10分,共计50分)1、如图,中,,连接,点MNP分别是的中点.(1)请你判断的形状,并证明你的结论.(2)将绕点A旋转,若,请直接写出周长的最大值与最小值.2、如图,在⊙O中,点E是弦CD的中点,过点OE作直径ABAEBE),连接BD,过点CCFBDAB于点G,交⊙O于点F,连接AF.求证:AGAF3、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题.(1)图1中的“弦图”的四个直角三角形组成的图形是     对称图形(填“轴”或“中心”).(2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:①每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影;②图2中所设计的图案(不含方格纸)必须是轴对称图形而不是中心对称图形;图3中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形.4、如图,ABC是⊙O的内接三角形,,连接AO并延长交⊙O于点D,过点C作⊙O的切线,与BA的延长线相交于点E(1)求证:ADEC(2)若AD=6,求线段AE的长.5、如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PBAB,∠PBA=∠C(1)求证:PB是⊙O的切线;(2)连接OP,若OPBC,且OP=8,⊙O的半径为3,求BC的长. -参考答案-一、单选题1、C【分析】直接根据题意及弧长公式可直接进行求解.【详解】解:由题意得:的圆心角所对弧的弧长是故选C.【点睛】本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.2、B【分析】由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2.【详解】由题意以及旋转的性质知AD=AB,∠BAD=60°∴∠ADB=∠ABD∵∠ADB+∠ABD+∠BAD=180°∴∠ADB=∠ABD=60°为等边三角形,即AB= AD =BD=2CD=BC-BD=4-2=2故选:B.【点睛】本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形.3、B【分析】连接OB,过点OOCAB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.【详解】解:连接OB,过点OOCAB于点D,交⊙O于点C,如图所示:AB=8cm,BD=AB=4(cm),由题意得:OB=OC==5cm,RtOBD中,OD=(cm),CD=OC-OD=5-3=2(cm),即水的最大深度为2cm,故选:B.【点睛】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.4、B【分析】由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.【详解】解:因为每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°,所以每次旋转相同角度 .故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.5、C【分析】如图,过点CCTAB于点T,过点OOHAB于点H,交⊙O于点K,连接AOAK,解直角三角形求出AB,求出CT的最大值,可得结论.【详解】解:如图,过点CCTAB 于点T,过点OOHAB于点H,交⊙O于点K,连接AOAK由题意可得AB垂直平分线段OKAO=AKOH=HK=3,OA=OKOA=OK=AK∴∠OAK=∠AOK=60°,AH=OA×sin60°=6×=3OHABAH=BHAB=2AH=6OC+OHCTCT⩽6+3=9,CT的最大值为9,∴△ABC的面积的最大值为=27故选:C.【点睛】本题考查垂径定理、三角函数、三角形的面积、垂线段最短等知识,解题的关键是求出CT的最大值,属于中考常考题型.6、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【详解】A.不是中心对称图形,故本选项不符合题意;B.是中心对称图形,故本选项符合题意;C.不是中心对称图形,故本选项不符合题意;D.不是中心对称图形,故本选项不符合题意.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.【详解】解:连接 与圆相切于点故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.8、A【分析】根据三角形旋转得出,根据点ADE在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.【详解】证明:∵绕点C逆时针旋转得到∴∠ADC=∠DAC∵点ADE在同一条直线上,∴∠DAC=50°,∴∠BAD=∠BAC-∠DAC=80°故选A.【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.9、C【分析】先设半径为r,再根据弧长公式建立方程,解出r即可【详解】设半径为r则周长为2πr120°所对应的弧长为解得r=3故选C【点睛】本题考查弧长计算,牢记弧长公式是本题关键.10、B【详解】解:.是轴对称图形,不是中心对称图形,故此选项不符合题意;.既是轴对称图形,也是中心对称图形,故此选项符合题意;.是轴对称图形,不是中心对称图形,故此选项不符合题意;.不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:B.【点睛】本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题1、3【分析】AAEBCE,过CCFADF,根据圆周角定理可得∠ACB=∠B=∠DAB=AC=10,再由等腰三角形的性质可知BE=CE=6,根据相似三角形的判定证明△ABE∽△CDF,由相似三角形的性质和勾股定理分别求得AEDFCF AF即可求解.【详解】解:过AAEBCE,过CCFADF,则∠AEB=∠CFD=90°, AB=10,∴∠ACB=∠B=∠DAB=AC=10,AEBCBC=12,BE=CE=6,  ∵∠B=∠D,∠AEB=∠CFD=90°,∴△ABE∽△CDFAB=10,CD=5,BE=6,AE=8,解得:DF=3,CF=4,RtAFC中,∠AFC=90°,AC=10,CF=4,AD=DF+AF=3+2故答案为:3+2【点睛】本题考查圆周角定理、等腰三角形的性质、相似三角形的判定与性质、勾股定理,熟练掌握圆周角定理和相似三角形的判定与性质是解答的关键.2、5【分析】直接利用直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:根据直角三角形斜边上的中线等于斜边的一半,即可知道点到点ABC的距离相等,如下图:故答案是:5.【点睛】本题考查了直角三角形的外接圆的外心,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半即可求解.3、【分析】如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接 (即)分别在优弧与劣弧上, PMPN分别与⊙O相切于AB两点, 故答案为:【点睛】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.4、4【分析】由周长公式可得⊙O半径为4,再由正多边形的中心角公式可得正六边形ABCDEF中心角为,即可知正六边形ABCDEF为6个边长为4的正三角形组成的,则可求得六边形ABCDEF边长.【详解】∵⊙O的周长为8π∴⊙O半径为4∵正六边形ABCDEF内接于⊙O∴正六边形ABCDEF中心角为∴正六边形ABCDEF为6个边长为4的正三角形组成的∴正六边形ABCDEF边长为4.故答案为:4.【点睛】本题考查了正多边形的中心角公式,正n边形的每个中心角都等于,由中心角为得出正六边ABCDEF为6个边长为4的正三角形组成的是解题的关键.5、【分析】已知扇形的圆心角为,半径为2,代入弧长公式计算.【详解】解:依题意,n=r=2,∴扇形的弧长=故答案为:【点睛】本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=三、解答题1、(1)是等腰直角三角形,证明见解析(2)周长最小值为。最大值为【分析】(1)连接BD,CE,根据SAS证明得BD=CE,根据三角形中位线性质可证明PM=PN;,进而可得结论;(2)当BD最小时即点D在AB上,此时周长最小,当点D在BA的延长线上时,BD最大,此时周长最大,均为,求出BD的长即可解决问题.(1)连接BD,CE,如图, ∴BD=CE,∵点MNP分别是的中点//,PN//BD,PN=BD∴PM=PN, ∵PN//BD∴∠PNC=∠DBC∴∠MPN=∠MPD+∠DPN=∠ECA+∠ACD+∠PCN+∠PNC=∠ACB+∠DBC+∠ABD=∠ACB+∠ABC=90° 是等腰直角三角形;(2)由(1)知,是等腰直角三角形 的周长为 的周长为 当BD最小时即点D在AB上,此时周长最小,∵AB=8,AD=3∴BD的最小值为AB-AD=8-3=5周长最小为当点D在BA的延长线上时,BD最大,此时周长最大,∴BD=AB+AD=8+3=11周长最大为【点睛】此题主要考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,三角形中位线定理的应用等知识,熟练掌握相关知识是解答本题的关键.2、见解析【分析】由题意易得ABCD,则有,由平行线的性质可得,然后可得,进而问题可求证.【详解】证明:∵AB为⊙O的直径,点E是弦CD的中点,ABCDCFBD【点睛】本题主要考查垂径定理、平行线的性质及圆周角定理,熟练掌握垂径定理、平行线的性质及圆周角定理是解题的关键.3、(1)中心(2)见解析【分析】(1)利用中心对称图形的意义得到答案即可;(2)①每个直角三角形的顶点均在方格纸的格点上,且四个三角形不重叠,是轴对称图形;②所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.(1)图1中的“弦图”的四个直角三角形组成的图形是中心对称图形,故答案为:中心;(2)如图2是轴对称图形而不是中心对称图形;图3既是轴对称图形,又是中心对称图形.【点睛】本题考查利用旋转或轴对称设计方案,关键是理解旋转和轴对称的概念,按要求作图即可.4、(1)见解析;(2)6【分析】(1)连接OC,根据CE是⊙O的切线,可得∠OCE,根据圆周角定理,可得∠AOC=,从而得到∠AOC+∠OCE,即可求证;(2)过点AAFECEC于点F,由∠AOCOAOC,可得∠OAC,从而得到∠BAD,再由ADEC,可得,然后证得四边形OAFC是正方形,可得,从而得到AF=3,再由直角三角形的性质,即可求解.【详解】证明:(1)连接OCCE是⊙O的切线,∴∠OCE∵∠ABC∴∠AOC=2∠ABC∵∠AOC+∠OCEADEC(2)解:过点AAFECEC于点F∵∠AOCOAOC∴∠OAC∵∠BAC∴∠BADADEC∵∠OCE,∠AOC,∠AFC=90°,∴四边形OAFC是矩形,OAOC∴四边形OAFC是正方形,RtAFE中,AE=2AF=6.【点睛】本题主要考查了圆周角定理,切线的性质,直角三角形的性质,正方形的判定和性质,熟练掌握相关知识点是解题的关键.5、(1)见解析(2)【分析】(1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;(2)证明,得出对应边成比例,即可求出的长.(1)证明:连接,如图所示:的直径,的切线;(2)解:的半径为【点睛】本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定. 

    相关试卷

    2020-2021学年第24章 圆综合与测试课后练习题:

    这是一份2020-2021学年第24章 圆综合与测试课后练习题,共26页。

    初中数学沪科版九年级下册第24章 圆综合与测试课后练习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后练习题,共32页。

    沪科版九年级下册第24章 圆综合与测试同步测试题:

    这是一份沪科版九年级下册第24章 圆综合与测试同步测试题,共34页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map