初中数学沪科版九年级下册第24章 圆综合与测试课后复习题
展开沪科版九年级数学下册第24章圆课时练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )
A.6 B. C.3 D.
2、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
3、下列图形中,是中心对称图形,但不是轴对称图形的是( )
A. B. C. D.
4、下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
5、的边经过圆心,与圆相切于点,若,则的大小等于( )
A. B. C. D.
6、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )
A.直径所对圆周角为 B.如果点在圆上,那么点到圆心的距离等于半径
C.直径是最长的弦 D.垂直于弦的直径平分这条弦
7、下列四个图案中,是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
8、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )
A.3 B.4 C.5 D.6
9、下列图形中,是中心对称图形也是轴对称图形的是( )
A. B. C. D.
10、计算半径为1,圆心角为的扇形面积为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在中,,是内的一个动点,满足.若,,则长的最小值为_______.
2、如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为 _____.
3、一个五边形共有__________条对角线.
4、如图,已知扇形的圆心角为60°,半径为2,则图中弓形(阴影部分)的面积为______.
5、如图,正方形ABCD是边长为2,点E、F是AD边上的两个动点,且AE=DF,连接BE、CF,BE与对角线AC交于点G,连接DG交CF于点H,连接BH,则BH的最小值为_______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,A,P,B,C是⊙O上的四点,∠APC=∠CPB=60°.
(1)判断△ABC的形状,并证明你的结论;
(2)求证:PA+PB=PC.
2、如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.
(1)求证:
①BC是⊙O的切线;
②;
(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.
3、如图,在△ABC是⊙O的内接三角形,∠B=45°,连接OC,过点A作AD∥OC,交BC的延长线于D.
(1)求证:AD是⊙O的切线;
(2)若⊙O的半径为2,∠OCB=75°,求△ABC边AB的长.
4、综合与实践
“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具——三分角器.图1是它的示意图,其中与半圆的直径在同一直线上,且的长度与半圆的半径相等;与垂直于点,足够长.
使用方法如图2所示,若要把三等分,只需适当放置三分角器,使经过的顶点,点落在边上,半圆与另一边恰好相切,切点为,则,就把三等分了.
为了说明这一方法的正确性,需要对其进行证明.
独立思考:(1)如下给出了不完整的“已知”和“求证”,请补充完整.
已知:如图2,点,,,在同一直线上,,垂足为点,________,切半圆于.求证:________________.
探究解决:(2)请完成证明过程.
应用实践:(3)若半圆的直径为,,求的长度.
5、如图,⊙O的半径为10cm,弦AB垂直平分半径OC,垂足为点D.
(1)弦AB的长为 .
(2)求劣弧的长.
-参考答案-
一、单选题
1、D
【分析】
如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.
【详解】
解:如图所示,设圆的圆心为O,连接OC,OB,
∵AC,AB都是圆O的切线,
∴∠OCA=∠OBA=90°,OC=OB,
又∵OA=OA,
∴Rt△OCA≌Rt△OBA(HL),
∴∠OAC=∠OAB,
∵∠DAC=60°,
∴,
∴∠AOB=30°,
∴OA=2AB=6,
∴,
∴圆O的直径为,
故选D.
【点睛】
本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.
2、C
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A.是轴对称图形,不是中心对称图形,故此选项不合题意;
B.不是轴对称图形,是中心对称图形,故此选项不符合题意;
C.是轴对称图形,也是中心对称图形,故此选项合题意;
D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
3、B
【分析】
根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.
【详解】
解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;
B、是中心对称图形但不是轴对称图形,故符合题意;
C、既不是轴对称图形也不是中心对称图形,故不符合题意;
D、是轴对称图形但不是中心对称图形,故不符合题意;
故选B.
【点睛】
本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.
4、D
【详解】
解:.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
.不是轴对称图形,是中心对称图形,故本选项不符合题意;
.是轴对称图形,不是中心对称图形,故本选项不符合题意;
.既是轴对称图形,又是中心对称图形,故本选项符合题意.
故选:D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
5、A
【分析】
连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.
【详解】
解:连接,
,
,
与圆相切于点,
,
,
故选:A.
【点睛】
本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
6、A
【分析】
定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.
【详解】
A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;
B、C选项,根据圆的定义可以得到;
D选项,是垂径定理;
故选:A
【点睛】
本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.
7、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;
B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
C、是轴对称图形,是中心对称图形,故此选项不符合题意;
D、不是轴对称图形,是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
8、A
【分析】
先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.
【详解】
由旋转的性质得:,
,
是等边三角形,
,
,
.
故选:A.
【点睛】
本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.
9、C
【分析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
【详解】
解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;
B、是轴对称图形,不是中心对称图形,故B选项不符合题意;
C、既是轴对称图形,又是中心对称图形,故C选项符合题意;
D、是轴对称图形,但不是中心对称图形,故D选项不符合题意.
故选:C.
【点睛】
本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
10、B
【分析】
直接根据扇形的面积公式计算即可.
【详解】
故选:B.
【点睛】
本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.
二、填空题
1、2
【分析】
取AC中点O,由勾股定理的逆定理可知∠ADC=90°,则点D在以O为圆心,以AC为直径的圆上,作△ADC外接圆,连接BO,交圆O于,则长的最小值即为,由此求解即可.
【详解】
解:如图所示,取AC中点O,
∵,即,
∴∠ADC=90°,
∴点D在以O为圆心,以AC为直径的圆上,
作△ADC外接圆,连接BO,交圆O于,则长的最小值即为,
∵,,∠ACB=90°,
∴,
∴,
∴,
∴,
故答案为:2.
【点睛】
本题主要考查了一点到圆上一点的最短距离,勾股定理的逆定理,勾股定理,解题的关键在于确定点D的运动轨迹.
2、
【分析】
连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,,,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.
【详解】
解:如图所示,连接OB,交AC于点D,
∵四边形OABC为平行四边形,,
∴四边形OABC为菱形,
∴,,,
∵,
∴为等边三角形,
∴,
∴,
在中,设,则,
∴,
即,
解得:或(舍去),
∴的长为:,
故答案为:.
【点睛】
题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.
3、5
【分析】
由n边形的对角线有: 条,再把代入计算即可得.
【详解】
解:边形共有条对角线,
五边形共有条对角线.
故答案为:5
【点睛】
本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键.
4、
【分析】
根据弓形的面积=扇形的面积-三角形的面积求解即可.
【详解】
解:如图,AC⊥OB,
∵圆心角为60°,OA=OB,
∴△OAB是等边三角形,
∴OC=OB=1,
∴AC=,
∴S△OAB=OB×AC=×2×=,
∵S扇形OAB==,
∴弓形(阴影部分)的面积= S扇形OAB- S△OAB=,
故答案为:.
【点睛】
本题考查扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法以及直角三角形的边角关系是正确解答的关键.
5、##
【分析】
延长AG交CD于M,如图1,可证△ADG≌△DGC可得∠GCD=∠DAM,再证△ADM≌△DFC可得DF=DM=AE,可证△ABE≌△ADM,可得H是以AB为直径的圆上一点,取AB中点O,连接OD,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值.
【详解】
解:延长AG交CD于M,如图1,
∵ABCD是正方形,
∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC,
∵AD=CD,∠ADB=∠BDC,DG=DG,
∴△ADG≌△DGC,
∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC,
∴△ADM≌△CDF,
∴FD=DM且AE=DF,
∴AE=DM且AB=AD,∠ADM=∠BAD=90°,
∴△ABE≌△DAM,
∴∠DAM=∠ABE,
∵∠DAM+∠BAM=90°,
∴∠BAM+∠ABE=90°,即∠AHB=90°,
∴点H是以AB为直径的圆上一点.
如图2,取AB中点O,连接OD,OH,
∵AB=AD=2,O是AB中点,
∴AO=1=OH,
在Rt△AOD中,OD=,
∵DH≥OD-OH,
∴DH≥-1,
∴DH的最小值为-1,
故答案为:-1.
【点睛】
本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点.
三、解答题
1、(1)△ABC是等边三角形,证明见解析;(2)见解析
【分析】
(1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;
(2)如图所示,在PC取一点E使得AE=AP,先证明△APE是等边三角形,得到AP=PE,∠AEP=60°,可以推出∠AEC=∠APB,然后证明△APB≌△AEC得到BP=CE,即可证明PC=PE+CE=AP+BP.
【详解】
解:(1)△ABC是等边三角形.证明如下:
由圆周角定理:∠BAC=∠CPB,∠ABC=∠APC
∵∠APC=∠CPB=60°,
∴∠BAC=∠ABC=60°,
∴∠ACB=180°-∠BAC-∠ABC=180°-60°-60°=60°.
∴△ABC是等边三角形.
(2)如图所示,在PC取一点E使得AE=AP,
∵∠APE=60°,AP=AE,
∴△APE是等边三角形,
∴AP=PE,∠AEP=60°,
∴∠AEC=120°,
又∵∠APC=∠CPB=60°,
∴∠APB=120°,
∴∠AEC=∠APB,
∵△ABC是等边三角形,
∴AB=AC,
又∵∠ABP=∠ACE,
∴△APB≌△AEC(AAS),
∴BP=CE,
∴PC=PE+CE=AP+BP.
【点睛】
本题考查了圆周角定理、等边三角形的性质与判定,全等三角形的性质与判定,解题的关键是掌握圆周角定理,正确求出∠ABC=∠BAC=60°.
2、(1)①见解析;②见解析;(2).
【分析】
(1)①连接OD,由角平分线的性质解得,再根据内错角相等,两直线平行,证明,继而由两直线平行,同旁内角互补证明即可解题;
②连接DE,由弦切角定理得到,再证明,由相似三角形对应边成比例解题;
(2)证明是等边三角形,四边形DOAF是菱形,,结合扇形面积公式解题.
【详解】
解:(1)①连接OD,
是∠BAC的平分线
是⊙O的切线;
②连接DE,
是⊙O的切线,
是直径
(2)连接DE、OD、DF、OF,
设圆的半径为R,
点F是劣弧AD的中点,
OF是DA中垂线
DF=AF,
是等边三角形,四边形DOAF是菱形,
.
【点睛】
本题考查圆的综合题,涉及切线的判定与性质、平行四边形的性质、等边三角形的判定与性质、相似三角形的判定与性质、扇形面积等知识,综合性较强,有难度,掌握相关知识是解题关键.
3、(1)见解析;(2)
【分析】
(1)如图所示,连接OA,由圆周角定理可得∠COA=90°,再由平行线的性质得到∠OAD+∠COA=180°,则∠OAD=90°,由此即可证明;
(2)连接OB,过点O作OE⊥AB,垂足为E,先由等腰三角形的性质与三角形内角和定理求出∠COB =30°,则∠AOB=120°,可以得到∠OAB=∠OBA=30°,由勾股定理可得,求出,则AB=.
【详解】
解:(1)如图所示,连接OA,
∵∠CBA=45°,
∴∠COA=90°,
∵AD∥OC,
∴∠OAD+∠COA=180°,
∴∠OAD=90°,
又∵点A在圆O上,
∴AD是⊙O的切线;
(2)连接OB,过点O作OE⊥AB,垂足为E,
∵∠OCB=75°,OB=OC,
∴∠OCB=∠OBC=75°,
∴∠COB=180°-∠OCB-∠OBC=30°,
由(1)证可得∠AOC=90°,
∴∠AOB=120°,
∵OA=OB,
∴∠OAB=∠OBA=30°,
又∵OE⊥AB,
∴AE=BE,
在Rt△AOE中,AO=2,∠OAE=30°,
∴OE=AO=1,
由勾股定理可得,,
∴AB=.
【点睛】
本题主要考查了圆周角定理,切线的判定,等腰三角形的性质与判定,含30度角的直角三角形的性质,三角形内角和定理,勾股定理,熟知相关知识是解题的关键.
4、(1),,将三等分;(2)见解析;(3)
【分析】
(1)根据题意即可得;
(2)先证明与全等,然后根据全等的性质可得,再由圆的切线的性质可得,可得三个角相等,即可证明结论;
(3)连,延长与相交于点,由(2)结论可得,再由切线的性质,,然后利用勾股定理及线段间的数量关系可得,最后利用相似三角形的判定和性质求解即可得.
【详解】
解:(1),,将三等分,
故答案为:;,将三等分,
(2)证明:在与中,
,
,
.
,
是的切线.
、都是的切线,
,
,
,将三等分.
(3)如图,连,延长与相交于点,
由(2),知.
是的切线,
,
,.
∵半径,
∴由勾股定理得,在中,
,,
.
∵,
,
,
,即,
.
【点睛】
题目主要考查全等三角形的判定和性质,相似三角形的判定和性质,圆的切线的性质,勾股定理等,理解题意,结合图形综合运用这些知识点是解题关键.
5、(1),(2).
【分析】
(1)根据弦AB垂直平分半径OC,OC=OB=10cm,得出OD=CD=,∠ODB=90°,根据勾股定理,可求AB=2BD=2×;
(2)根据锐角三角函数定义求出cos∠DOB=,得出∠DOB=60°,利用弧长公式求出即可.
【详解】
解:(1)∵弦AB垂直平分半径OC,OC=OB=10cm,
∴OD=CD=,∠ODB=90°,
∴,
∴AB=2BD=2×,
故答案为;
(2)cos∠DOB=,
∴∠DOB=60°,
∴的度数为2×60°=120°,
∴.
【点睛】
本题考查垂直平分线性质,勾股定理,锐角三角函数,弧长,掌握垂直平分线性质,勾股定理,锐角三角函数,弧长是解题关键.
初中数学沪科版九年级下册第24章 圆综合与测试同步练习题: 这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步练习题,共28页。
沪科版九年级下册第24章 圆综合与测试课时练习: 这是一份沪科版九年级下册第24章 圆综合与测试课时练习,共34页。
初中沪科版第24章 圆综合与测试当堂达标检测题: 这是一份初中沪科版第24章 圆综合与测试当堂达标检测题,共32页。试卷主要包含了等边三角形,下列语句判断正确的是等内容,欢迎下载使用。