数学九年级下册第26章 概率初步综合与测试当堂检测题
展开沪科版九年级数学下册第26章概率初步必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列事件中,属于随机事件的是( )
A.用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形
B.用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形
C.如果一个三角形有两个角相等,那么两个角所对的边也相等
D.有两组对应边和一组对应角分别相等的两个三角形全等
2、某区为了解初中生体质健康水平,在全区进行初中生体质健康的随机抽测,结果如下表:根据抽测结果,下列对该区初中生体质健康合格的概率的估计,最合理的是( )
累计抽测的学生数n | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 |
体质健康合格的学生数与n的比值 | 0.85 | 0.9 | 0.93 | 0. 91 | 0.89 | 0.9 | 0.91 | 0.91 | 0.92 | 0.92 |
A.0.92 B.0.905 C.0.03 D.0.9
3、有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、圆四个图案,卡片背面全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是( )
A. B. C. D.1
4、下列说法中,正确的是( )
A.“射击运动员射击一次,命中靶心”是必然事件
B.事件发生的可能性越大,它的概率越接近1
C.某种彩票中奖的概率是1%,因此买100张该种彩票就一定会中奖
D.抛掷一枚图钉,“针尖朝上”的概率可以用列举法求得
5、下列判断正确的是( )
A.明天太阳从东方升起是随机事件;
B.购买一张彩票中奖是必然事件;
C.掷一枚骰子,向上一面的点数是6是不可能事件;
D.任意画一个三角形,其内角和是360°是不可能事件;
6、下列事件中,是必然事件的是( )
A.如果a2=b2,那么a=b
B.车辆随机到达一个路口,遇到红灯
C.2021年有366天
D.13个人中至少有两个人生肖相同
7、在一个不透明的盒子中装有红球、白球、黑球共40个,这些球除颜色外无其他差别,在看不见球的条件下,随机从盒子中摸出一个球记录颜色后放回.经过多次试验,发现摸到红球的频率稳定在30%左右,则盒子中红球的个数约为( )
A.12 B.15 C.18 D.23
8、下列事件中,属于不可能事件的是( )
A.射击运动员射击一次,命中靶心
B.从一个只装有白球和红球的袋中摸球,摸出黄球
C.班里的两名同学,他们的生日是同一天
D.经过红绿灯路口,遇到绿灯
9、下列事件是必然发生的事件是( )
A.在地球上,上抛的篮球一定会下落
B.明天的气温一定比今天高
C.中秋节晚上一定能看到月亮
D.某彩票中奖率是1%,买100张彩票一定中奖一张
10、在一个不透明的袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,从袋中任意摸出一个球,是黑球的概率为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、有两个正方体的积木块,如图所示.
下面是小怡投掷某块积木200次的情况统计表:
灰色的面朝上 | 白色的面朝上 |
32次 | 168次 |
根据表中的数据推测,小怡最有可能投掷的是______号积木.
2、已知盒子里有6个黑色球和n个红色球,每个球除颜色外均相同,现蒙眼从中任取一个球,取出红色球的概率是,则n是______.
3、有三辆车按1,2,3编号,苗苗和珊珊两人可任意选坐一辆车,则两人同坐一辆车的概率为___.
4、在一个暗箱里放入除颜色外其它都相同的1个红球和11个黄球,搅拌均匀后随机任取一球,取到红球的概率是 _____.
5、从分别写有2,4,5,6的四张卡片中任取一张,卡片上的数是偶数的概率为_____.
三、解答题(5小题,每小题10分,共计50分)
1、口袋装有3只形状大小一样的球,其中2个球是红色,1个球是白色,规定游戏者一次从口袋中摸出一个球,然后放回第二次再摸一个球,然后再放回.甲两次摸到红球获胜,乙摸到一红一白或二白获胜,你认为游戏对双方公平吗?请说明理由
2、为了引导青少年学党史,某中学举行了“献礼建党百年”党史知识竞赛活动,将成绩划分为四个等级:A(优秀)、B(优良)、C(合格)、D(不合格).小李随机调查了部分同学的竞赛成绩,绘制成了如下统计图(部分信息未给出):
(1)小李共抽取了 名学生的成绩进行统计分析,扇形统计图中“优秀”等级对应的扇形圆心角度数为 ,请补全条形统计图;
(2)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数;
(3)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率.
3、小宇和小伟玩“石头、剪刀、布”的游戏.这个游戏的规则是:“剪刀”胜“布”,“布”胜“石头”,“石头”胜“剪刀”,手势相同不分胜负.如果二人同时随机出手(分别出三种手势中的一种手势)一次,那么小宇获胜的概率是多少?
4、根据公安部交管局下发的通知,春节前开展一次“一带一盔”安全守护行动,其中要求骑行摩托车、电动车需要佩戴头盔,某日交警部门在某个十字路口共拦截了50名不带头盔的骑行者,根据年龄段和性别得到如下表的统计信息,根据表中信息回答下列问题:
年龄x(岁) | 人数 | 男性占比 |
x<20 | 4 | 50% |
20≤x<30 | m | 60% |
30≤x<40 | 25 | 60% |
40≤x<50 | 8 | 75% |
x≥50 | 3 | 100% |
(1)统计表中m的值为 ;
(2)若要按照表格中各年龄段的人数来绘制扇形统计图,则年龄在“30≤x<40”部分所对应扇形的圆心角的度数为 ;
(3)若从年龄在“x<20”的4人中随机抽取2人参加交通安全知识学习,请用列表或画树状图的方法,求恰好抽到1名男性和1名女性的概率.
5、在一个不透明的盒子中装有四个只有颜色不同的小球,其中两个红球,一个黄球,一个蓝球.
(1)搅匀后从中任意摸出1个球,恰好是红球的概率为_______;恰好是黄球的概率为________.
(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,用列表法或树形图的方法,求两次都是红球的概率.
-参考答案-
一、单选题
1、D
【分析】
根据三角形三边关系判断A选项;根据勾股定理判断B选项;根据等腰三角形的性质:等边对等角判断C选项;根据全等三角形的判定即可判断D选项.
【详解】
A.因为,所以用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形为不可能事件,故此选项错误;
B.因为满足勾股定理,所以用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形为必然事件,故此选项错误;
C.因为三角形有两个角相等则这个三角形是等腰三角形,故等腰三角形等角对等边,所以如果一个三角形有两个角相等,那么两个角所对的边也相等为必然事件,故此选项错误;
D.根据SAS可以判断两三角形全等,但ASS不能判断两三角形全等,所以有两组对应边和一组对应角分别相等的两个三角形全等为随机事件,故此选项正确.
故选:D.
【点睛】
本题考查随机事件,随机事件可能发生也可能不发生,必然事件一定发生,不可能事件一定不发生,掌握随机事件的定义是解题的关键.
2、A
【分析】
根据频数估计概率可直接进行求解.
【详解】
解:由表格可知:经过大量重复试验,体质健康合格的学生数与抽测的学生数n的比值稳定在0.92附近,所以该区初中生体质健康合格的概率为0.92;
故选A.
【点睛】
本题主要考查用频数估计概率,熟练掌握利用频数估计概率是解题的关键.
3、C
【分析】
先判断出矩形、菱形、等边三角形、圆的中心对称图形,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,再根据概率公式解答即可.
【详解】
解:在矩形、菱形、等边三角形、圆中,中心对称图形有矩形、菱形和圆,共3个;
则P(中心对称图形)=;
故选:C.
【点睛】
本题考查中心对称图形的识别,列举法求概率,掌握中心对称图形的识别,列举法求概率是解题关键.
4、B
【分析】
根据随机事件,必然事件,不可能事件的定义可判断A,根据随机事件发生的机会大小,估计概率的大小可判断B,可判断C,不规则物体的概率只能通过大数次的实验,使频率达到稳定时用频率估计概率可判断D.
【详解】
解:“射击运动员射击一次,命中靶心”可能会发生,也可都能不会发生是随机事件不是必然事件,故选项A不正确;
事件发生的可能性越大,说明发生的机会越大,它的概率越接近1,故选项B正确;
某种彩票中奖的概率是1%,因此买100张该种彩票每一张彩票中奖的概率都是1%,可能会中奖,但一定会中奖机会很小,故选项C不正确;
图钉是不规则的物体,抛掷一枚图钉,“针尖朝上”的概率只能通过实验,大数次的实验,使频率稳定时,可用频率估计概率,不可以用列举法求得,故选项D不正确.
故选择B.
【点睛】
本题考查事件,事件发生的可能性,概率,实验概率,掌握事件,事件发生的可能性,概率,实验概率知识是解题关键.
5、D
【详解】
解:A、明天太阳从东方升起是必然事件,故本选项错误,不符合题意;
B、购买一张彩票中奖是随机事件,故本选项错误,不符合题意;
C、掷一枚骰子,向上一面的点数是6是随机事件,故本选项错误,不符合题意;
D、任意画一个三角形,其内角和是360°是不可能事件,故本选项正确,符合题意;
故选:D
【点睛】
本题考查的是对必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.
6、D
【分析】
在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.
【详解】
解:如果a2=b2,那么,原说法是随机事件,故A不符合题意;
车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;
2021年是平年,有365天,原说法是不可能事件,故C不符合题意;
13个人中至少有两个人生肖相同,是必然事件,故D符合题意,
故选:D.
【点睛】
本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.
7、A
【分析】
由题意可设盒子中红球的个数x,则盒子中球的总个数x,摸到红球的频率稳定在30%左右,根据频率与概率的关系可得出摸到红球的概率为30%,再根据概率的计算公式计算即可.
【详解】
解:设盒子中红球的个数x,根据题意,得:
解得x=12,
所以盒子中红球的个数是12,
故选:A.
【点睛】
本题主要考查了利用频率估计概率以及概率求法的运用,利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;频率与概率的关系生:一般地,在大量的重复试验中,随着试验次数的增加,事件A发生的频率会稳定于某个常数p,我们称事件A发生的概率为p.
8、B
【分析】
根据不可能事件的意义,结合具体的问题情境进行判断即可.
【详解】
解:A、射击运动员射击一次,命中靶心,是随机事件;故A不符合题意;
B、从一个只装有白球和红球的袋中摸球,摸出黄球,是不可能事件,故B符合题意;
C、班里的两名同学,他们的生日是同一天,是随机事件;故C不符合题意;
D、经过红绿灯路口,遇到绿灯,是随机事件,故D不符合题意;
故选:B.
【点睛】
本题考查随机事件,不可能事件,必然事件,理解随机事件,不可能事件,必然事件的意义是正确判断的前提.
9、A
【分析】
根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案.
【详解】
解:A、在地球上,上抛的篮球一定会下落是必然事件,符合题意;
B、明天的气温一定比今天的高,是随机事件,不符合题意;
C、中秋节晚上一定能看到月亮,是随机事件,不符合题意;
D、某彩票中奖率是1%,买100张彩票一定中奖一张,是随机事件,不符合题意.
故选:A.
【点睛】
本题考查了必然事件的概念,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.关键是理解必然事件指在一定条件下一定发生的事件.
10、C
【分析】
从中任意摸出1个球共有3+4=7种结果,其中摸出的球是黑球的有4种结果,直接根据概率公式求解即可.
【详解】
解:∵装有7个只有颜色不同的球,其中4个黑球,
∴从布袋中随机摸出一个球,摸出的球是黑球的概率=.
故选:C.
【点睛】
本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.
二、填空题
1、②
【分析】
计算出①号积木、②号积木朝上的面为白色、为灰色的概率,再求出小怡掷200次积木的实验频率,进行判断即可.
【详解】
①号积木由于三面灰色,三面白色,因此随机掷1次,朝上的面是白色、灰色的可能性都是,
②号积木由于一面灰色,五面白色,因此随机掷1次,朝上的面是灰色的可能性都是,是白色的可能性为,
由表格中的数据可得,小怡掷200次积木得到朝上的面为灰色的频率为,白色的频率为,
故选择的是②号积木,
理由:小怡掷200次积木的实验频率接近于②号积木相应的概率.
故答案为②
【点睛】
本题主要考查频率与概率的关系,解题的关键是正确理解实验频率与概率的关系.
2、6
【分析】
根据概率公式计算即可;
【详解】
由题可得,取出红色球的概率是,
∴,
∴,
经检验,是方程的解;
故答案是:6.
【点睛】
本题主要考查了概率公式的应用和分式方程求解,准确计算是解题的关键.
3、
【分析】
画出树状图计算即可;
【详解】
根据题意画树状图得:
,,,
共有9种等可能的结果,期中两人同坐一辆车的结果数为3,
∴两人同坐一辆车的概率为;
故答案是:.
【点睛】
本题主要考查了画树状图求概率,准确计算是解题的关键.
4、
【分析】
由题意可知,共有12个球,取到每个球的机会均等,根据概率公式解题.
【详解】
解:P(红球)=
故答案为:
【点睛】
本题考查简单事件的概率,是基础考点,掌握相关知识是解题关键.
5、
【分析】
根据概率的求法,让是偶数的卡片数除以总卡片数即为所求的概率.
【详解】
解答:解:∵四张卡片上分别标有数字2,4,5,6,其中有2,4,6,共3张是偶数,
∴从中随机抽取一张,卡片上的数字是偶数的概率为,
故答案为:.
【点睛】
点评:本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
三、解答题
1、这个游戏对双方是不公平的,理由见解析
【分析】
首先依据题先用树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可.
【详解】
解:这个游戏对双方是不公平的.
如图,
∵一共有9种情况,两次摸到红球的有4种,摸到一红一白或二白的有5种,
∴P(两个红球)=;P(一红一白)=,概率不相同,那么游戏不公平.
【点睛】
本题考查的是游戏的公平性.解决本题需要正确画出树状图进行解题.用到的知识点为:概率=所求情况数与总情况数之比.
2、(1)100,126°,条形统计图见解析;(2)700;(3)
【分析】
(1)根据C等级的人数和所占比可求出抽取的总人数,用A等级的人数除以抽取的总人数乘以360°可得A等级对应扇形圆心角的度数,用抽取的总人数乘以B等级所占的百分比得B等级的人数,用抽取的总人数减去A、B、C等级的人数得出D等级人数,即可补全条形统计图;
(2)用2000乘以A等级所占的百分比即可估计出成绩“优秀”的学生人数;
(3)由(1)得不合格有5人,故由3男2女,用列表法即可求回访到一男一女的概率.
【详解】
(1)C等级的人数和所占比可得抽取的总人数为:(名),
∴“优秀”等级对应的扇形圆心角度数为:,
B等级的人数为:(名),
D等级的人数为:(名),
∴补全条形统计图如下所示:
(2)(名),
∴该校竞赛成绩“优秀”的学生人数为700名;
(3)∵抽取不及格的人数有5名,其中有2名女生,
∴有3名男生,
设3名男生分别为,,,2名女生分别为,,列表格如下所示:
| |||||
| |||||
| |||||
| |||||
| |||||
|
∴总的结果有20种,一男一女的有12种,
∴回访到一男一女的概率为.
【点睛】
本题考查统计与概率,其中涉及到条形统计图与扇形统计图相关联问题,用样本估计总体以及用列举法求概率,读懂条形统计图和扇形统计图所给出的条件是解题的关键.
3、小宇获胜的概率是,见解析.
【分析】
根据题意画树状图表示出所有等可能的情况,继而解题.
【详解】
解:画树状图如下,
所有机会均等的情况共9种,小宇获胜的概率为:,
答:小宇获胜的概率是.
【点睛】
本题考查用列表法或画树状图表示概率,是基础考点,掌握相关知识是解题关键.
4、
(1)10
(2)180°
(3)见解析,
【分析】
(1)根据总数减去表格中其他数据即可求解;
(2)根据年龄在“30≤x<40”的人数占总人数的比例乘以360°即可求解;
(3)用列表法求概率即可.
(1)
故答案为:10
(2)
故答案为:
(3)
设两名男性用表示,两名女性用表示,根据题意,列表如下,
| ||||
| ||||
| ||||
| ||||
|
由上表可知,共有12种等可能的结果,符合条件的结果有8种,
故P(恰好抽到1名男性和1名女性)=
【点睛】
本题考查了求扇形统计图的圆心角的度数,求频数,根据列表法求概率,理解题意,掌握以上知识是解题的关键.
5、
(1);
(2)两次都是红球的概率为
【分析】
(1)根据列举法将所有可能列出,然后找出符合条件的可能,计算即可得;
(2)四个球简写为“红1,红2,黄,蓝”,利用列表法列出所有出现的可能,从中找到符合条件的结果数,再根据概率公式计算可.
(1)
解:搅匀后从中任意摸出1个球,有四种可能:红球、红球、黄球、蓝球,其中是红球的可能有两种,
∴,
其中是黄球的可能有一种,
∴,
故答案为:;;
(2)
四个球简写为“红1,红2,黄,蓝”,列表法为:
| 红1 | 红2 | 黄 | 蓝 |
红1 | (红1,红1) | (红1,红2) | (红1,黄) | (红1,蓝) |
红2 | (红2,红1) | (红2,红2) | (红2,黄) | (红2,蓝) |
黄 | (黄,红1) | (黄,红2) | (黄,黄) | (黄,蓝) |
蓝 | (蓝,红1) | (蓝,红2) | (蓝,黄) | (蓝,蓝) |
共有16种等可能的结果数,其中两次都是红球的有4种结果,
所以两次都是红球的概率为:.
【点睛】
题目主要考查利用列表法或树状图法求概率,理解题意,熟练掌握列表法或树状图法是解题关键.
沪科版九年级下册第24章 圆综合与测试复习练习题: 这是一份沪科版九年级下册第24章 圆综合与测试复习练习题,共33页。
沪科版九年级下册第26章 概率初步综合与测试一课一练: 这是一份沪科版九年级下册第26章 概率初步综合与测试一课一练,共20页。试卷主要包含了下列四幅图的质地大小,在一个不透明的布袋中,红色,一个不透明的口袋里有红,下列说法中正确的是等内容,欢迎下载使用。
初中沪科版第26章 概率初步综合与测试测试题: 这是一份初中沪科版第26章 概率初步综合与测试测试题,共18页。试卷主要包含了如图,有5张形状,下列事件,你认为是必然事件的是等内容,欢迎下载使用。