沪科版第26章 概率初步综合与测试课时练习
展开
这是一份沪科版第26章 概率初步综合与测试课时练习,共19页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件中是不可能事件的是( )A.铁杵成针 B.水滴石穿 C.水中捞月 D.百步穿杨2、某学校九年级为庆祝建党一百周年举办“歌唱祖国”合唱比赛,用抽签的方式确定出场顺序.现有8根形状、大小完全相同的纸签,上面分别标有序号1、2、3、4、5、6、7、8.下列事件中是必然事件的是( )A.一班抽到的序号小于6 B.一班抽到的序号为9C.一班抽到的序号大于0 D.一班抽到的序号为73、如图,有5张形状、大小、材质均相同的卡片,正面分别印着北京2022年冬奥会的越野滑雪、速度滑冰、花样滑冰、高山滑雪、单板滑雪大跳台的体育图标,背面完全相同.现将这5张卡片洗匀并正面向下放在桌上,从中随机抽取一张,抽出的卡片正面恰好是“滑冰”项目的图案的可能性是( ).A. B. C. D.4、甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是( )A.掷一枚正六面体的骰子,出现1点的概率B.一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率5、一个不透明的盒子中装有2个白球,5个红球,这些球除颜色外其他都相同.则在下列说法中正确的是( )A.无放回的从中连续摸出三个红球是随机事件B.从中摸出一个棕色球是随机事件C.无放回的从中连续摸出两个白球是不可能事件D.从中摸出一个红色球是必然事件6、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率是( )A. B. C. D.7、下列说法正确的是( )A.“经过有交通信号的路口遇到红灯”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.“心想事成,万事如意”描述的事件是随机事件D.天气预报显示明天为阴天,那么明天一定不会下雨8、如图,将一个棱长为3的正方体表面涂上颜色,把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为( )A. B. C. D.9、任意掷一枚质地均匀的骰子,偶数点朝上的可能性是( )A. B. C. D.10、如图,一只小狗在如图所示的方砖上走来走去,最终停留在阴影方砖上的概率是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、学校决定从甲、乙、丙三名学生中随机抽取两名介绍学习经验,则同时抽到乙、丙两名同学的概率为_____.2、在一个不透明的袋子中装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现,摸出黄球的频率稳定在0.30左右,则袋子中黄球的数量可能是 _____个.3、如图,在一块边长为30cm的正方形飞镖游戏板上,有一个半径为10cm的圆形阴影区域,飞镖投向正方形任何位置的机会均等,则飞镖落在阴影区域内的概率为________(结果保留π).4、现有四张分别标有数字﹣2,﹣1,0,2的卡片,它们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽取一张,记下数字不放回,然后背面朝上洗匀,再随机抽取一张,则两次抽出的卡片上所标数字之和为正数的概率是 _____.5、在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出两个球,则摸到两个都是红球的概率是_______.三、解答题(5小题,每小题10分,共计50分)1、在6张卡片上分别写有1~6的整数,随机抽取1张放回,再随机抽取1张.(1)求第二次取出的数字小于第一次取出的数字的概率.(2)请你根据题意设计某个简单的等可能性事件,并求出这个事件的概率.2、根据公安部交管局下发的通知,春节前开展一次“一带一盔”安全守护行动,其中要求骑行摩托车、电动车需要佩戴头盔,某日交警部门在某个十字路口共拦截了50名不带头盔的骑行者,根据年龄段和性别得到如下表的统计信息,根据表中信息回答下列问题:年龄x(岁)人数男性占比x<20450%20≤x<30m60%30≤x<402560%40≤x<50875%x≥503100%(1)统计表中m的值为 ;(2)若要按照表格中各年龄段的人数来绘制扇形统计图,则年龄在“30≤x<40”部分所对应扇形的圆心角的度数为 ;(3)若从年龄在“x<20”的4人中随机抽取2人参加交通安全知识学习,请用列表或画树状图的方法,求恰好抽到1名男性和1名女性的概率.3、口袋装有3只形状大小一样的球,其中2个球是红色,1个球是白色,规定游戏者一次从口袋中摸出一个球,然后放回第二次再摸一个球,然后再放回.甲两次摸到红球获胜,乙摸到一红一白或二白获胜,你认为游戏对双方公平吗?请说明理由4、数字“122”是中国道路交通事故报警电话.为推进“文明交通行动计划”,公安部将每年的12月2日定为“交通安全日”.班主任决定从4名同学(小迎,小冬,小奥,小会)中通过抽签的方式确定2名同学去参加宣传活动.抽签规则:将4名同学的姓名分别写在4张完全相同的卡片正面,把4张卡片的背面朝上,洗匀后放在桌子上,班主任先从中随机抽取一张卡片,记下名字,再从剩余的3张卡片中随机抽取一张,记下名字.(1)“小冬被抽中”是________事件,“小红被抽中”是________事件(填“不可能”、“必然”、“随机”),第一次抽取卡片抽中小会的概率是________;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小奥被抽中的概率.5、小王和小刘两人在玩转盘游戏时,游戏规则:同时转动A,B两个转盘,当两转盘停止后,若指针所指两个区域的数字之和为2的倍数,则小王获胜;若指针所指两个区域的数字之积为2的倍数,则小刘获胜,如果指针落在分割线上,则视为无效,需重新转动转盘.(1)请用列表或画树状图的方法表示所有可能的结果.(2)这个游戏规则对双方公平吗?请说明理由. -参考答案-一、单选题1、C【分析】根据随机事件,必然事件和不可能事件的定义,逐项即可判断.【详解】A、铁杵成针,一定能达到,是必然事件,故选项不符合;B、水滴石穿, 一定能达到,是必然事件,故选项不符合;C、水中捞月,一定不能达到,是不可能事件,故选项符合;D、百步穿杨,不一定能达到,是随机事件,故选项不符合;故选:C【点睛】本题考查了随机事件,必然事件,不可能事件,解决本题的关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、C【分析】必然事件,是指在一定条件下一定会发生的事件;根据必然事件的定义对几个选项进行判断,得出答案.【详解】解:A中一班抽到的序号小于是随机事件,故不符合要求;B中一班抽到的序号为是不可能事件,故不符合要求;C中一班抽到的序号大于是必然事件,故符合要求;D中一班抽到的序号为是随机事件,故不符合要求;故选C.【点睛】本题考察了必然事件.解题的关键在于区分必然、随机与不可能事件的含义.3、B【分析】先找出滑冰项目图案的张数,再根据概率公式即可得出答案.【详解】解:∵有5张形状、大小、质地均相同的卡片,滑冰项目图案的有速度滑冰和花样滑冰2张,∴从中随机抽取一张,抽出的卡片正面恰好是滑冰项目图案的概率是;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.4、B【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;B、一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率≈0.33,故此选项符合题意;C、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;D、任意写出一个整数,能被2整除的概率为,故此选项不符合题意.故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.5、A【分析】随机事件是在一定条件下,可能发生,也可能不发生的事件,必然事件是一定会发生的,不受外界影响的,发生概率是100%,不可能事件一定不会发生,概率是0根据事件的定义与分类对各选项进行辨析即可.【详解】无放回的从中连续摸出三个红球可能会发生,也可能不会发生是随机事件,故选项A正确;一个不透明的盒子中装有2个白球,5个红球,没有棕色球,从中摸出一个棕色球是不可能事件,故选项B不正确;无放回的从中连续摸出两个白球可能会发生,也可能不会发生是随机事件,故选项C不正确;一个不透明的盒子中装有2个白球,5个红球,从中摸出一个红色球可能会发生,也可能不会发生是随机事件,故选项D不正确.故选A.【点睛】本题考查随机事件,必然事件,不可能事件,掌握事件识别方法与分类标准是解题关键.6、B【分析】根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可.【详解】解:随机掷一枚质地均匀的硬币三次,根据树状图可知至少有两次正面朝上的事件次数为:4,总的情况为8次,故至少有两次正面朝上的事件概率是:.故选:B.【点睛】本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图.7、C【详解】解:A、“经过有交通信号的路口遇到红灯”是随机事件,故本选项不符合题意;B、已知某篮球运动员投篮投中的概率为0.6,则他投10次不一定可投中6次,故本选项不符合题意;C、“心想事成,万事如意”描述的事件是随机事件,故本选项符合题意;D、天气预报显示明天为阴天,那么明天可能不会下雨,故本选项符合题意;故选:C【点睛】本题考查的是对随机事件和必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.8、B【分析】直接根据题意得出恰有三个面被涂色的有8个,再利用概率公式求出答案.【详解】解:由题意可得:小立方体一共有27个,恰有三个面被涂色的为棱长为3的正方体顶点处的8个小正方体;故取得的小正方体恰有三个面被涂色.的概率为.故选:B.【点睛】此题主要考查了概率公式的应用,正确得出三个面被涂色.小立方体的个数是解题关键.9、A【分析】如果一个事件的发生有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率 利用概率公式直接计算即可得到答案.【详解】解:抛掷一枚分别标有1,2,3,4,5,6的正方体骰子,骰子落地时朝上的数为偶数的可能性有种,而所有的等可能的结果数有种,所以骰子落地时朝上的数为偶数的概率是 故选A【点睛】本题考查了简单随机事件的概率,掌握概率公式是解本题的关键.10、B【分析】由题意,只要求出阴影部分与矩形的面积比即可.【详解】解:由题意,假设每个小方砖的面积为1,则所有方砖的面积为15,而阴影部分的面积为5,由几何概型公式得到最终停在阴影方砖上的概率为:;故选:B.【点睛】本题将概率的求解设置于黑白方砖中,考查学生对简单几何概率的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.二、填空题1、【分析】画树状图,共有6种等可能的结果,同时抽到乙、丙两名同学的结果有2个,再由概率公式解题.【详解】解:画树状图如图:共有6个等可能的结果,同时抽到乙、丙两名同学的结果有2个,∴同时抽到乙、丙两名同学的概率为,故答案为:.【点睛】本题考查列树状图表示概率,是重要考点,掌握相关知识是解题关键.2、6【分析】由题意直接根据黄球出现的频率和球的总数,可以计算出黄球的个数.【详解】解:由题意可得,20×0.30=6(个),即袋子中黄球的个数最有可能是6个.故答案为:6.【点睛】本题考查利用频率估计概率,解答本题的关键是明确题意,计算出黄球的个数.3、##【分析】根据概率的公式,利用圆的面积除以正方形的面积,即可求解【详解】解:根据题意得:飞镖落在阴影区域内的概率为 故答案为:【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.4、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽出的卡片所标数字之和为正数的情况,再利用概率公式即可求得答案.【详解】解:画树状图如下所示:由树状图可知,一共有16中等可能性的结果数,其中两次抽出的卡片上所标数字之和为正数的结果数有(-1,2),(0,2),(2,-1),(2,0)四种情况,∴P两次抽出的卡片上所标数字之和为正数,故答案为:.【点睛】本题主要考查了列表法或树状图法求概率.解题的关键在于能够熟练掌握:概率=所求情况数与总情况数之比.5、【分析】先用列表法分析所有等可能的结果和摸到两个都是红球的结果数,然后根据概率公式求解即可.【详解】解:记红球为,白球为,列表得: ∵一共有12种情况,摸到两个都是红球有2种,∴P(两个球都是红球),故答案是.【点睛】本题主要考查了用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.三、解答题1、(1);(2)设计见详解:.【分析】(1)根据题意列举出所有等情况数,进而利用第二次取出的数字小于第一次取出的数字的情况数除以总情况数即可;(2)由题意设计在6张卡片上分别写有1~6的整数,随机抽取1张放回,再随机抽取1张,求两次抽中的卡片上的数都是偶数的概率,进而通过概率=所求情况数与总情况数之比进行求解.【详解】解:(1)画树状图如下:∵共有36种等可能的情况,其中第二次取出的数字小于第一次取出的数字有15种,∴第二次取出的数字小于第一次取出的数字的概率是;(2)设计:在6张卡片上分别写有1~6的整数,随机抽取1张放回,再随机抽取1张,求两次抽中的卡片上的数都是偶数的概率?∵共有36种等可能的情况,其中两次抽中的卡片上的数都是偶数的有9种,∴两次抽中的卡片上的数都是偶数的概率是.【点睛】本题主要考查概率的求法及树状图法;用到的知识点为:概率=所求情况数与总情况数之比.2、(1)10(2)180°(3)见解析,【分析】(1)根据总数减去表格中其他数据即可求解;(2)根据年龄在“30≤x<40”的人数占总人数的比例乘以360°即可求解;(3)用列表法求概率即可.(1)故答案为:10(2)故答案为:(3)设两名男性用表示,两名女性用表示,根据题意,列表如下, 由上表可知,共有12种等可能的结果,符合条件的结果有8种,故P(恰好抽到1名男性和1名女性)=【点睛】本题考查了求扇形统计图的圆心角的度数,求频数,根据列表法求概率,理解题意,掌握以上知识是解题的关键.3、这个游戏对双方是不公平的,理由见解析【分析】首先依据题先用树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可.【详解】解:这个游戏对双方是不公平的.如图,∵一共有9种情况,两次摸到红球的有4种,摸到一红一白或二白的有5种,∴P(两个红球)=;P(一红一白)=,概率不相同,那么游戏不公平.【点睛】本题考查的是游戏的公平性.解决本题需要正确画出树状图进行解题.用到的知识点为:概率=所求情况数与总情况数之比.4、(1)随机;随机;(2)【分析】(1)根据随机事件和不可能事件的概念及概率公式解答可得;(2)列举出所有情况,看所求的情况占总情况的多少即可.(1)解:“小冬被抽中”是随机事件,“小红被抽中”是随机事件,第一次抽取卡片抽中小会的概率是;(2)解:根据题意可列表如下:(A表示小迎,B表示小冬,C表示小奥,D表示小会)由表可知,共有12种等可能结果,其中小奥被抽中(含有C)的有6种结果,所以小月被选中的概率=.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏地列出所有可能的结果,适用于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.5、(1)见解析;(2)不公平,理由见解析【分析】(1)根据列表法求得所有可能结果;(2)根据列表分别求得小王和小刘获胜的概率进而可得结论【详解】(1)列表如下 1231和为2,积为1和为3,积为2和为4,积为32和为3,积为2和为4,积为4和为5,积为6(2)不公平,理由如下,根据列表可知,共有6种等可能情形,其中和为2的倍数有3种情形,小王获胜的概率为;积为2的倍数有4种情形,小刘获胜的概率为两者概率不一致,故不公平【点睛】本题考查了概率的应用,列表法求概率是解题的关键.
相关试卷
这是一份数学沪科版第26章 概率初步综合与测试巩固练习,共21页。试卷主要包含了下列说法正确的是,不透明的布袋内装有形状等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试练习,共19页。试卷主要包含了下列判断正确的是,下列事件是随机事件的是,下列说法中正确的是,下列事件中是必然事件的是,下列四幅图的质地大小等内容,欢迎下载使用。
这是一份初中第26章 概率初步综合与测试同步达标检测题,共19页。试卷主要包含了把6张大小,下列说法中,正确的是,下列事件是必然事件的是,书架上有本小说等内容,欢迎下载使用。