初中数学第26章 概率初步综合与测试当堂检测题
展开
这是一份初中数学第26章 概率初步综合与测试当堂检测题,共17页。试卷主要包含了下列事件是必然事件的是,下列说法正确的是.等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同.若从中随机摸出一个球,则摸出的一个球是黄球的概率为( )A. B. C. D.2、在一个不透明的盒子中装有红球、白球、黑球共40个,这些球除颜色外无其他差别,在看不见球的条件下,随机从盒子中摸出一个球记录颜色后放回.经过多次试验,发现摸到红球的频率稳定在30%左右,则盒子中红球的个数约为( )A.12 B.15 C.18 D.233、有四张背面完全相同的卡片,正面分别标有数字1、2、3、4,从中同时抽取两张,则下列事件为随机事件的是( )A.两张卡片的数字之和等于1 B.两张卡片的数字之和大于1C.两张卡片的数字之和等于6 D.两张卡片的数字之和大于74、经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,甲、乙两辆汽车经过这个十字路口时,一辆车向左转,一辆车向右转的概率是( )A. B. C. D.5、乒乓球比赛以11分为1局,水平相当的甲、乙两人进行乒乓球比赛,在一局比赛中,甲已经得了8分,乙只得了2分,对这局比赛的结果进行预判,下列说法正确的是( )A.甲获胜的可能性比乙大 B.乙获胜的可能性比甲大C.甲、乙获胜的可能性一样大 D.无法判断6、在一个口袋中有2个完全相同的小球,它们的标号分别为1,2从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和是3的概率是( )A. B. C. D.7、下列事件是必然事件的是( )A.明天会下雨B.抛一枚硬币,正面朝上C.通常加热到100℃,水沸腾D.经过城市中某一有交通信号灯的路口,恰好遇到红灯8、下列说法正确的是( ).A.“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件B.“打开电视机,正在播放乒乓球比赛”是必然事件C.“面积相等的两个三角形全等”是不可能事件D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次9、从分别标有号数1到10的10张除标号外完全一样的卡片中,随意抽取一张,其号数为3的倍数的概率是( )A. B. C. D.10、甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是( )A.掷一枚正六面体的骰子,出现1点的概率B.一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、从这四个数中选一个数,选出的这个数是无理数的概率为___.2、掷一枚质地均匀的硬币8次,其中3次正面朝上,5次反面朝上,现再掷一次,正面朝上的概率是 _____.3、已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,从箱中随机取出一个球,这个球是白球的概率为 ___.4、如图,在一块边长为30cm的正方形飞镖游戏板上,有一个半径为10cm的圆形阴影区域,飞镖投向正方形任何位置的机会均等,则飞镖落在阴影区域内的概率为________(结果保留π).5、在一个布袋中,装有除颜色外其它完全相同的2个红球和2个白球,如果从中随机摸出两个球,那么摸到的两个红球的概率是________.三、解答题(5小题,每小题10分,共计50分)1、口袋装有3只形状大小一样的球,其中2个球是红色,1个球是白色,规定游戏者一次从口袋中摸出一个球,然后放回第二次再摸一个球,然后再放回.甲两次摸到红球获胜,乙摸到一红一白或二白获胜,你认为游戏对双方公平吗?请说明理由2、甲、乙两个家庭有各自的生育规划,假定生男生女的概率一样.(1)甲家庭已有一个男孩,准备再生一个孩子,则第2个孩子是女孩的概率是 ;(2)乙家庭没有孩子,准备生2个孩子,用列表或画树状图的方法求至少有一个孩子是女孩的概率.3、落实“双减”政策,丰富课后服务,为了发展学生兴趣特长,梁鄂中学七年级准备开设(窗花剪纸)、(书法绘画)、(中华武术)、(校园舞蹈)四门选修课程(每位学生必须且只选其中一门),甲、乙两位同学分别随机选择其中一门选修课程参加学习.用列表法或画树状图法求:(1)甲、乙都选择(窗花剪纸)课程的概率;(2)甲、乙选择同一门课程的概率.4、国庆期间,某电影院上映了《长津湖》《我和我父辈》《五个扑水的少年》三部电影.甲、乙两同学从中选取一部电影观看.求甲、乙两同学选取同一部电影的概率.5、山西某高校为了弘扬女排精神,组建了女排社团,通过测量女同学的身高(单位:cm),并绘制了两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1)填空:该排球社团一共有 名女同学,a= .(2)把频数分布直方图补充完整.(3)随机抽取1名学生,估计这名学生身高高于160cm的概率. -参考答案-一、单选题1、C【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:一个不透明的盒子中装有12个白球,4个黄球,从中随机摸出一个球,所有等可能的情况16种,其中摸出的一个球是黄球的情况有4种,∴随机抽取一个球是黄球的概率是.故选C.【点睛】本题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所有符合条件的情况数是解决本题的关键.2、A【分析】由题意可设盒子中红球的个数x,则盒子中球的总个数x,摸到红球的频率稳定在30%左右,根据频率与概率的关系可得出摸到红球的概率为30%,再根据概率的计算公式计算即可.【详解】解:设盒子中红球的个数x,根据题意,得: 解得x=12,所以盒子中红球的个数是12,故选:A.【点睛】本题主要考查了利用频率估计概率以及概率求法的运用,利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;频率与概率的关系生:一般地,在大量的重复试验中,随着试验次数的增加,事件A发生的频率会稳定于某个常数p,我们称事件A发生的概率为p.3、C【分析】将两张卡片数字之和所有结果列出有3、4、5、6、7五种情况,再结合必然事件、不可能事件、随机事件的概念对选项依次判断即可.【详解】解:A、两张卡片的数字之和等于1是不可能事件,与题意不符,故错误;B、两张卡片的数字之和大于1是必然事件,与题意不符,故错误;C、两张卡片的数字之和等于6是随机事件,与题意符合,故正确;D、两张卡片的数字之和大于7是不可能事件,与题意不符,故错误;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、C【分析】可以采用列表法或树状图求解:可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.【详解】画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为;故选C.【点睛】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解5、A【分析】根据事件发生的可能性即可判断.【详解】∵甲已经得了8分,乙只得了2分,甲、乙两人水平相当∴甲获胜的可能性比乙大故选A.【点睛】此题主要考查事件发生的可能性,解题的关键是根据题意进行判断.6、B【分析】列表展示所有4种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解即可.【详解】解:列表如下: 12123234由表知,共有4种等可能结果,其中两次摸出的小球的标号之和是3的有2种结果,所以两次摸出的小球的标号之和是3的概率为,故选:B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.7、C【分析】根据必然事件就是一定发生的事件逐项判断即可.【详解】A.明天会下雨,属于随机事件,故该选项不符合题意;B.抛一枚硬币,正面朝上,属于随机事件,故该选项不符合题意;C.通常加热到100℃,水沸腾,属于必然事件,故该选项符合题意;D.经过城市中某一有交通信号灯的路口,恰好遇到红灯,属于随机事件,故该选项不符合题意;故选C.【点睛】本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键.8、A【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,故此选项正确;B、“打开电视机,正在播放乒乓球比赛” 是随机事件,故此选项错误;C、“面积相等的两个三角形全等” 是随机事件,故此选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;故选:A.【点睛】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、C【分析】用3的倍数的个数除以数的总数即为所求的概率.【详解】解:∵1到10的数字中是3的倍数的有3,6,9共3个,∴卡片上的数字是3的倍数的概率是.故选:C.【点睛】本题考查概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.10、B【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;B、一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率≈0.33,故此选项符合题意;C、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;D、任意写出一个整数,能被2整除的概率为,故此选项不符合题意.故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题1、【分析】确定无理数的个数,利用概率公式计算.【详解】解:这四个数中无理数有,∴选出的这个数是无理数的概率为,故答案为:.【点睛】此题考查了无理数的定义,概率的计算公式,正确判断无理数的解题的关键.2、##【分析】直接利用概率的意义分析得出答案.【详解】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同,∴再次掷出这枚硬币,正面朝上的概率是.故答案为:.【点睛】此题主要考查了概率的意义,正确把握概率的意义是解题关键.3、【分析】根据概率的公式,即可求解【详解】解:根据题意得:这个球是白球的概率为 故答案为:【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.4、##【分析】根据概率的公式,利用圆的面积除以正方形的面积,即可求解【详解】解:根据题意得:飞镖落在阴影区域内的概率为 故答案为:【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.5、【分析】画树状图,共有12个等可能的结果,摸到的两个球颜色红色的结果有2个,再由概率公式求解即可.【详解】解:画树状图如图:共有12个等可能的结果,摸到的两个红球的有2种结果,摸到的两个红球的概率是,故答案为:.【点睛】本题考查列表法或画树状图求概率,解题的关键是准确画出树状图或列出表格.三、解答题1、这个游戏对双方是不公平的,理由见解析【分析】首先依据题先用树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可.【详解】解:这个游戏对双方是不公平的.如图,∵一共有9种情况,两次摸到红球的有4种,摸到一红一白或二白的有5种,∴P(两个红球)=;P(一红一白)=,概率不相同,那么游戏不公平.【点睛】本题考查的是游戏的公平性.解决本题需要正确画出树状图进行解题.用到的知识点为:概率=所求情况数与总情况数之比.2、(1);(2)【分析】(1)直接利用概率公式求解;(2)画树状图展示所有4种等可能的结果数,再找出至少有一个孩子是女孩的结果数,然后根据概率公式求解.【详解】解:(1)第二个孩子是女孩的概率=;故答案为:;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.3、(1) ;(2)【分析】(1)由题意先用列表法得出所有等可能的结果数,进而用甲、乙都选择(窗花剪纸)课程的情况数除以所有等可能的结果数即可;(2)由题意直接用甲、乙选择同一门课程的情况数除以所有等可能的结果数即可.【详解】解:(1)由题意列表, ABCDAA,AA,BA,CA,DBB,AB,BB,CB,DCC,AC,BC,CC,DDD,AD,BD,CD,D由图表可知共有16种等可能的情况数,其中甲、乙都选择(窗花剪纸)课程的情况数为1种,所以甲、乙都选择(窗花剪纸)课程的概率为.(2)由(1)图表可知共有16种等可能的情况数,其中甲、乙选择同一门课程的情况数为4种,所以甲、乙选择同一门课程的概率为.【点睛】本题考查列表法和画树状图法求概率,正确列表和画出树状图是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.4、【分析】通过画树状图可知:共有9种等可能的结果,甲、乙两同学选取同一部电影的结果有3种,再由概率公式求解即可.【详解】解:把《长津湖》《我和我父辈》《五个扑水的少年》三部电影分别记为A、B、C,画树状图如下:共有9种等可能的结果,甲、乙两同学选取同一部电影的结果有3种,∴甲、乙两同学选取同一部电影的概率为.【点睛】本题考查了树状图法求概率,正确画出树状图是解题的关键,用到的知识点为:概率 =所求情况数与总情况数之比.5、(1)100,30;(2)见解析;(3)0.55【分析】(1)根据频数分布直方图中组的人数除以扇形统计图中组的所占百分比即可求得总人数,根据总人数减去组的人数即可求得组的人数,除以总人数即可求得的值;(2)根据(1)中的结论补全统计图即可;(3)根据身高高于160cm除以总人数即可求得随机抽取1名学生,估计这名学生身高高于160cm的概率【详解】解:(1)总人数为:;组的人数为故答案为:(2)如图,(3)总人数为,身高高于160cm为随机抽取1名学生,估计这名学生身高高于160cm的概率为【点睛】本题考查了频数直方图和扇形统计图信息关联,简单概率计算,从统计图中获取信息是解题的关键.
相关试卷
这是一份初中第26章 概率初步综合与测试巩固练习,共19页。试卷主要包含了下列说法正确的是,下列事件中,是必然事件的是,下列说法中正确的是,下列说法错误的是等内容,欢迎下载使用。
这是一份沪科版九年级下册第26章 概率初步综合与测试巩固练习,共19页。试卷主要包含了下列说法中,正确的是,书架上有本小说,下列说法正确的是,下列事件中,属于必然事件的是等内容,欢迎下载使用。
这是一份初中第26章 概率初步综合与测试随堂练习题,共18页。试卷主要包含了下列判断正确的是,下列说法不正确的是等内容,欢迎下载使用。