![2022年最新精品解析沪科版九年级数学下册第26章概率初步综合训练练习题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12690571/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析沪科版九年级数学下册第26章概率初步综合训练练习题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12690571/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析沪科版九年级数学下册第26章概率初步综合训练练习题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12690571/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪科版九年级下册第26章 概率初步综合与测试课后作业题
展开
这是一份沪科版九年级下册第26章 概率初步综合与测试课后作业题,共19页。
沪科版九年级数学下册第26章概率初步综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、养鱼池养了同一品种的鱼,要大概了解养鱼池中的鱼的数量,池塘的主人想出了如下的办法:“他打捞出80尾鱼,做了标记后又放回了池塘,过了三天,他又捞了一网,发现捞起的90尾鱼中,带标记的有6尾.”你认为池塘主的做法( )A.有道理,池中大概有1200尾鱼 B.无道理C.有道理,池中大概有7200尾鱼 D.有道理,池中大概有1280尾鱼2、某学校九年级为庆祝建党一百周年举办“歌唱祖国”合唱比赛,用抽签的方式确定出场顺序.现有8根形状、大小完全相同的纸签,上面分别标有序号1、2、3、4、5、6、7、8.下列事件中是必然事件的是( )A.一班抽到的序号小于6 B.一班抽到的序号为9C.一班抽到的序号大于0 D.一班抽到的序号为73、经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,甲、乙两辆汽车经过这个十字路口时,一辆车向左转,一辆车向右转的概率是( )A. B. C. D.4、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中黑球1个,红球2个,从中随机摸出一个小球,则摸出的小球是黑色的概率是( )A. B. C. D.5、在一个口袋中有2个完全相同的小球,它们的标号分别为1,2从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和是3的概率是( )A. B. C. D.6、下列词语所描述的事件,属于必然事件的是( )A.守株待兔 B.水中捞月 C.水滴石穿 D.缘木求鱼7、一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学习小组做摸球试验,将口袋中的球拌匀,从中随机摸出个球,记下颜色后再放回口袋中.不断重复这一过程,获得数据如下:摸球的次数200300400100016002000摸到黑球的频数14218626066810641333摸到黑球的频率0.71000.62000.65000.66800.66500.6665该学习小组发现,摸到黑球的频率在一个常数附近摆动,由此估计这个口袋中黑球有( )个.A.4 B.3 C.2 D.18、一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,从袋子中随机摸出一个球,这个球是白球的概率是( )A. B. C. D.9、一个不透明的袋子里装有黄球18个和红球若干,小明通过多次摸球试验后发现摸到红球的频率稳定在0.4左右,则袋子里有红球( )个.A.12 B.15 C.18 D.5410、书架上有本小说、本散文,从中随机抽取本恰好是小说的概率是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个不透明的袋子中,装有若干个除颜色外都相同的小球,其中有8个红球和n个黑球,从袋中任意摸出一个球,若摸出黑球的概率是,则n=_____.2、已如一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.若往口袋中再放入2个白球,求从口袋中随机取出一个白球的概率________3、只有1和它本身两个因数且大于1的自然数叫做质数,我国数学家陈景润在有关质数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从3,5,7,11,13,23这6个质数中随机抽取一个,则抽到个位数是3的可能性是________.4、在一个不透明袋子中,装有3个红球和一些白球,这些球除颜色外无其他差别,从袋中随机摸出一个球是红球的概率为,则袋中白球的个数是________.5、某农科所为了深入践行“绿水青山就是金山银山”的理念,大力开展对植物生长的研究,该农科所在相同条件下做某植物种子发芽率的试验,得到的结果如下表所示:种子个数1002003004005006007008009001000…发芽种子个数94188281349435531625719812902…发芽种子频率(结果保留两位小数)0.940.940.940.870.870.890.890.900.900.90…根据频率的稳定性,估计这种植物种子不发芽的概率是______.三、解答题(5小题,每小题10分,共计50分)1、某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级2班参加球类活动人数统计表项目篮球足球乒乓球排球羽毛球人数a6576根据图中提供的信息,解答下列问题:(1)a= ,b= ;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约 人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.2、在太原市创建国家文明城市的过程中,东东和南南积极参加志愿者活动,有下列三个志愿者工作岗位供他们选择:(每个工作岗位仅能让一个人工作)①2个清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用,表示);②1个宣传类岗位:垃圾分类知识宣传(用表示).(1)东东从三个岗位中随机选取一个报名,恰好选择清理类岗位的概率为________.(2)若东东和南南各随机从三个岗位中选取一个报名,请你利用画树状图法或列表法求出他们恰好都选择同一类岗位的概率.3、在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,上面的数字不小于2的概率为 .(2)从中随机摸出一球不放回,再随机摸出一球,请用列表或画树状图的方法,求两次摸出小球上的数字和恰好是奇数的概率.4、为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:组别分数段(分)频数频率A组60≤x<70300.1B组70≤x<8090nC组80≤x<90m0.4D组90≤x<100600.2(1)在表中:m= ,n= ;(2)补全频数分布直方图;(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在 组;(4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A、C两组学生的概率是多少?并列表或画树状图说明.5、一个不透明的口袋中装有2个红球和1个白球,小球除颜色外其余均相同.(1)从口袋中随机摸出一个小球,小球的颜色是白色的概率是 ;(2)从口袋中随机摸出一个小球,记下颜色后放回,再随机摸出一个小球.请用画树状图(或列表)的方法,求两次摸出的小球颜色相同的概率. -参考答案-一、单选题1、A【分析】设池中大概有鱼x尾,然后根据题意可列方程,进而问题可求解.【详解】解:设池中大概有鱼x尾,由题意得:,解得:,经检验:是原方程的解;∴池塘主的做法有道理,池中大概有1200尾鱼;故选A.【点睛】本题主要考查分式方程的应用及概率,熟练掌握分式方程的应用及概率是解题的关键.2、C【分析】必然事件,是指在一定条件下一定会发生的事件;根据必然事件的定义对几个选项进行判断,得出答案.【详解】解:A中一班抽到的序号小于是随机事件,故不符合要求;B中一班抽到的序号为是不可能事件,故不符合要求;C中一班抽到的序号大于是必然事件,故符合要求;D中一班抽到的序号为是随机事件,故不符合要求;故选C.【点睛】本题考察了必然事件.解题的关键在于区分必然、随机与不可能事件的含义.3、C【分析】可以采用列表法或树状图求解:可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.【详解】画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为;故选C.【点睛】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解4、B【分析】用黑色的小球个数除以球的总个数即可解题.【详解】解:从中摸出一个小球,共有3种可能,其中摸出的小球是黑色的情况只有1种,故摸出的小球是黑色的概率是:故选:B.【点睛】本题考查概率公式,解题关键是掌握随机事件发生的概率.5、B【分析】列表展示所有4种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解即可.【详解】解:列表如下: 12123234由表知,共有4种等可能结果,其中两次摸出的小球的标号之和是3的有2种结果,所以两次摸出的小球的标号之和是3的概率为,故选:B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.6、C【分析】根据必然事件就是一定发生的事件逐项判断即可.【详解】A.守株待兔是随机事件,故该选项不符合题意;B.水中捞月是不可能事件,故该选项不符合题意;C.水滴石穿是必然事件,故该选项符合题意;D.缘木求鱼是不可能事件,故该选项不符合题意.故选:C.【点睛】本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键.7、C【分析】该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,据此知摸出黑球的概率为0.667,继而得摸出绿球的概率为0.333,求出袋子中球的总个数即可得出答案.【详解】解:该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,估计摸出黑球的概率为0.667,则摸出绿球的概率为,袋子中球的总个数为,由此估出黑球个数为,故选:C.【点睛】本题考查了利用频率估计概率,解题的关键是掌握大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.8、D【分析】根据随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),进行计算即可.【详解】解:∵一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,∴抽到每个球的可能性相同,∴布袋中任意摸出1个球,共有5种可能,摸到白球可能的次数为2次,摸到白球的概率是,∴P(白球).故选:D.【点睛】本题考查了随机事件概率的求法,熟练掌握随机事件概率公式是解题关键.9、A【分析】根据“大量重复试验中事件发生的频率逐渐稳定到的常数可以估计概率”直接写出答案即可.【详解】解:设有红色球x个,根据题意得:,解得:x=12,经检验,x=12是分式方程的解且符合题意.故选:【点睛】本题考查了利用频率估计概率的知识,解题的关键是能够根据摸到红球的频率求得红球的个数.10、D【分析】概率=所求情况数与总情况数之比,再分析可得:总的情况数有5种,而随机抽取刚好是小说的情况数有3种,利用概率公式可得答案.【详解】解:书架上有本小说、本散文,共有本书,从中随机抽取本恰好是小说的概率是;故选:D.【点睛】本题考查的是简单随机事件的概率,掌握“概率公式求解简单随机事件的概率”是解本题的关键.二、填空题1、【分析】根据概率公式计算即可【详解】共有个球,其中黑色球个从中任意摸出一球,摸出黑色球的概率是.解得经检验,是原方程的解故答案为:【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.概率=所求情况数与总情况数之比.2、【分析】先确定口袋中的球数,任意取出一个,求出等可能的所有情况,再从中找出满足条件的白球的可能情况,让后利用概率公式计算即可.【详解】解:往口袋中再放入2个白球,此时口袋中一共有球9个,任取一个球出现等可能情况一共有9中可能,其中有白球5个,任取一个球是白球的共有5中情况,∴从口袋中随机取出一个白球的概率P=,故答案为:.【点睛】本题考查列举法求简单概率,掌握列举法求简单概率,抓住列举所有等可能情况,与满足条件的情况,记住概率公式是解题关键.3、【分析】先利用列举法求出个位数字是3的所有结果数,然后利用概率公式求解即可.【详解】解:从3,5,7,11,13,23这6个质数中随机抽取一个数一共有6种等可能性的结果数,其中抽到个位是3的有3,13,23三种结果数,∴抽到个位数字是3的概率是,故答案为:.【点睛】本题主要考查了概率的计算,熟练掌握列举法进行概率的计算是解决本题的关键.4、6【分析】随机摸出一个球是红球的概率是,可以得到球的总个数,进而得出白球的个数.【详解】解:记摸出一个球是红球为事件白球有个故答案为:.【点睛】本题考察了概率的定义.解题的关键与难点在于理解概率的定义,求出球的总数.5、0.1【分析】大量重复试验下“发芽种子”的频率可以估计“发芽种子”的概率,据此求解.【详解】观察表格发现随着实验次数的增多频率逐渐稳定在0.9附近,故“发芽种子”的概率估计值为0.9.∴这种植物种子不发芽的概率是0.1.故答案为:0.1.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.三、解答题1、(1)16,17.5;(2)90;(3)【分析】(1)首先求得总人数,然后根据百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,根据概率公式即可求解.【详解】解:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为:16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案为:90;(3)如图,∵共有20种等可能的结果,两名同学恰为一男一女的有12种情况,∴则P(恰好选到一男一女)==.【点睛】本题考查的是统计图和扇形统计图的综合运用,用列表或树状图求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.2、(1);(2)【分析】(1)利用概率公式,即可求解;(2)根据题意画出树状图,得到共有6种等可能的情况数,其中他们恰好都选择同一类岗位的有2种,再利用概率公式,即可求解【详解】解:东东从三个岗位中随机选取一个报名,恰好选择清理类岗位的概率为.(2)根据题意画图如下:共有6种等可能的情况数,其中他们恰好都选择同一类岗位的有2种,则他们恰好都选择同一类岗位的概率是【点睛】本题主要考查了利用画树状图法或列表法求概率,熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.3、(1);(2)【分析】(1)列表确定出所有等可能的情况数,找出小球上写的数字不小于2的情况数,即可求出所求概率;(2)列表确定出所有等可能的情况数,找出两次摸出小球上的数字和恰好是奇数的情况数,即可求出所求概率.【详解】解:(1)从中随机摸出一个小球,小球上写的数字所有等可能情况有:1,2,3,4,共4种,其中数字不小于2的情况有:2,3,4,共3种,则P(小球上写的数字不小于2)=;故答案为:;(2)根据题意列表得: 12341﹣﹣﹣(1,2)(1,3)(1,4)2(2,1)﹣﹣﹣(2,3)(2,4)3(3,1)(3,2)﹣﹣﹣(3,4)4(4,1)(4,2)(4,3)﹣﹣﹣所有等可能的数有12种,两次摸出小球上的数字和恰好是奇数的情况有8种,则P(两次摸出小球上的数字和恰好是奇数)==.故答案为:【点睛】本题考查了概率公式,学会利用列表法与树状图法求随机事件的概率是解本题的关键.4、(1)120,0.3;(2)见解析;(3)C;(4) .【分析】(1)先根据A组频数及其频率求得总人数,再根据频率=频数÷总人数可得m、n的值;(2)根据(1)中所求结果即可补全频数分布直方图;(3)根据中位数的定义即可求解;(4)画树状图列出所有等可能结果,再找到抽中A、C的结果,根据概率公式求解可得.【详解】解:(1)∵本次调查的总人数为30÷0.1=300(人),∴m=300×0.4=120,n=90÷300=0.3,故答案为:120,0.3;(2)补全频数分布直方图如下:(3)由于共有300个数据,则其中位数为第150、151个数据的平均数,而第150、151个数据的平均数均落在C组,∴据此推断他的成绩在C组,故答案为:C;(4)画树状图如下:由树状图可知,共有12种等可能结果,其中抽中A、C两组同学的有2种结果,∴抽中A、C两组同学的概率为.【点睛】本题主要考查概率及数据统计,解题的关键是根据表格得到基本信息.5、(1);(2)【分析】(1)根据概率公式计算即可;(2)画出树状图即可得解;【详解】(1)根据题意可得,小球的颜色是白色的概率是;故答案是:;(2)根据题意画出树状图如下:则两次摸出的小球颜色相同的概率为.【点睛】本题主要考查了概率公式的应用和画树状图求概率,准确画图计算是解题的关键.
相关试卷
这是一份数学九年级下册第26章 概率初步综合与测试课后作业题,共21页。试卷主要包含了下列判断正确的是,下列说法正确的是,下列事件是随机事件的是,下列说法不正确的是等内容,欢迎下载使用。
这是一份初中数学第26章 概率初步综合与测试课后复习题,共20页。试卷主要包含了下列事件是必然事件的是,下列事件中,属于必然事件的是等内容,欢迎下载使用。
这是一份数学九年级下册第26章 概率初步综合与测试课时作业,共19页。试卷主要包含了下列事件中,属于随机事件的是,下列说法中正确的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)