终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年强化训练沪科版九年级数学下册第26章概率初步同步练习试卷(无超纲带解析)

    立即下载
    加入资料篮
    2022年强化训练沪科版九年级数学下册第26章概率初步同步练习试卷(无超纲带解析)第1页
    2022年强化训练沪科版九年级数学下册第26章概率初步同步练习试卷(无超纲带解析)第2页
    2022年强化训练沪科版九年级数学下册第26章概率初步同步练习试卷(无超纲带解析)第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第26章 概率初步综合与测试同步达标检测题

    展开

    这是一份2020-2021学年第26章 概率初步综合与测试同步达标检测题,共22页。试卷主要包含了下列说法正确的是,在一个不透明的布袋中,红色,有两个事件,事件等内容,欢迎下载使用。
    沪科版九年级数学下册第26章概率初步同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,有5张形状、大小、材质均相同的卡片,正面分别印着北京2022年冬奥会的越野滑雪、速度滑冰、花样滑冰、高山滑雪、单板滑雪大跳台的体育图标,背面完全相同.现将这5张卡片洗匀并正面向下放在桌上,从中随机抽取一张,抽出的卡片正面恰好是“滑冰”项目的图案的可能性是(    ).A. B. C. D.2、投掷一枚质地均匀的硬币m次,正面向上n次,下列表达正确的是(    A.的值一定是B.的值一定不是C.m越大,的值越接近D.随着m的增加,的值会在附近摆动,呈现出一定的稳定性3、下列事件为随机事件的是(    A.四个人分成三组,恰有一组有两个人 B.购买一张福利彩票,恰好中奖C.在一个只装有白球的盒子里摸出了红球 D.掷一次骰子,向上一面的点数小于74、下列说法正确的是(    A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上C.“彩票中奖的概率是1%”表示买100张彩票肯定会中奖D.“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近5、一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到红球的概率为( ).A.      B.             C.    D.16、在一个不透明的口袋中装有3张完全相同的卡片,卡片上面分别写有数字,0,2,从中随机抽出两张不同卡片,则下列判断正确的是(      A.数字之和是0的概率为0 B.数字之和是正数的概率为C.卡片上面的数字之和是负数的概率为 D.数字之和分别是负数、0、正数的概率相同7、在一个不透明的袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,从袋中任意摸出一个球,是黑球的概率为(  )A. B. C. D.8、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在0.15和0.45,则布袋中白色球的个数可能是(    A.24 B.18 C.16 D.69、有两个事件,事件(1):购买1张福利彩票,中奖;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6.下列判断正确的是(    A.(1)(2)都是随机事件 B.(1)(2)都是必然事件C.(1)是必然事件,(2)是随机事件 D.(1)是随机事件,(2)是必然事件10、下列说法正确的是(  )A.掷一枚质地均匀的骰子,掷得的点数为3的概率是B.一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,小军断定袋子里只有黄球C.连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同D.在同一年出生的400个同学中至少会有2个同学的生日相同第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、小华为学校“赓续百年初心,庆祝建党百年”活动布置会场,在—个不透明的口袋里有4根除颜色以外完全相同的缎带,其中2根为红色,2根为黄色,从口袋中随机摸出根缎带,则恰好摸出1根红色缎带1根黄色缎带的概率是______.2、农科院新培育出AB两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10020050010002000A出芽种子数961654919841965发芽率0.960.830.980.980.98B出芽种子数961924869771946发芽率0.960.960.970.980.97下面有三个推断:①在同样的地质环境下播种,A种子的出芽率可能会高于B种子;②当实验种子数里为100时,两种种子的发芽率均为0.96所以它发芽的概率一样;③随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98.其中不合理的是 _____.(只填序号)3、某校准备从AB两名女生和CD两名男生中任选2人代表学校参加沈阳市初中生辩论赛,则所选代表恰好为1名女生和1名男生的概率是 _______.4、如图,在一块边长为30cm的正方形飞镖游戏板上,有一个半径为10cm的圆形阴影区域,飞镖投向正方形任何位置的机会均等,则飞镖落在阴影区域内的概率为________(结果保留π).5、在发展现代化农业的形势下,现有AB两种新玉米种子,为了了解它们的出芽情况,在推广前做了五次出芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10030050010003000A出芽率0.990.940.960.980.97B出芽率0.990.950.940.970.96下面有三个推断:①当实验种子数量为100时,两种种子的出芽率均为0.99,所以AB两种新玉米种子出芽的概率一样;②随着实验种子数量的增加,A种子出芽率在 0.97附近摆动,显示出一定的稳定性,可以估计A子出芽的概率是0.97;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是_____________三、解答题(5小题,每小题10分,共计50分)1、一个不透明的口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4随机摸取一个小球后,不放回,再随机摸出一个小球,分别求下列事件的概率:(1)两次取出的小球标号和为奇数;(2)两次取出的小球标号和为偶数.2、如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格ABC中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格DEF中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是      (2)若甲、乙均可在本层移动.①黑色方块所构拼图是中心对称图形的概率是      ②用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.3、新冠病毒在全球肆虐,疫情防控刻不容缓.某校为了解学生对新冠疫情防控知识的了解程度,组织七、八年级学生开展新冠疫情防控知识测试(满分为10分).学校学生处从七、八年级学生中各随机抽取了20名学生的成绩进行了统计.下面提供了部分信息.抽取的20名七年级学生的成绩(单位:分)为:10,10,9,9,9,9,9,9,8,8,8,8,8,8,8,7,7,6,5,5.抽取的40名学生成绩分析表:年级七年级八年级平均分88.1  8b中位数a8  1.91.89请根据以上信息,解答下列问题:(1)直接写出上表中ab的值;(2)该校七、八年级共有学生2000人,估计此次测试成绩不低于9分的学生有多少人?(3)在所抽取的七年级与八年级得10分的学生中,随机抽取2名学生在全校学生大会上进行新冠疫情防控知识宣讲,求所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率.4、根据公安部交管局下发的通知,春节前开展一次“一带一盔”安全守护行动,其中要求骑行摩托车、电动车需要佩戴头盔,某日交警部门在某个十字路口共拦截了50名不带头盔的骑行者,根据年龄段和性别得到如下表的统计信息,根据表中信息回答下列问题:年龄x(岁)人数男性占比x<20450%20≤x<30m60%30≤x<402560%40≤x<50875%x≥503100%(1)统计表中m的值为         (2)若要按照表格中各年龄段的人数来绘制扇形统计图,则年龄在“30≤x<40”部分所对应扇形的圆心角的度数为         (3)若从年龄在“x<20”的4人中随机抽取2人参加交通安全知识学习,请用列表或画树状图的方法,求恰好抽到1名男性和1名女性的概率.5、一个不透明的盒子里装有5个黑球,2个白球和若干个黄球.它们除颜色不同外其余都相同,从中任意摸出1个球,是白球的概率为(1)求盒子里有几个黄球?(2)小张和小王将盒子中的黑球取出4个,利用剩下的球进行摸球游戏.他们约定:先摸出1个球后不放回,再摸出1个球,若这两个球中有黄球,则小张胜,否则小王胜、你认为这个游戏公平吗?请用列表或画树状图说明理由. -参考答案-一、单选题1、B【分析】先找出滑冰项目图案的张数,再根据概率公式即可得出答案.【详解】解:∵有5张形状、大小、质地均相同的卡片,滑冰项目图案的有速度滑冰和花样滑冰2张,∴从中随机抽取一张,抽出的卡片正面恰好是滑冰项目图案的概率是故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.2、D【分析】根据频率与概率的关系以及随机事件的定义判断即可【详解】投掷一枚质地均匀的硬币正面向上的概率是,而投掷一枚质地均匀的硬币正面向上是随机事件,是它的频率,随着m的增加,的值会在附近摆动,呈现出一定的稳定性;故选:D【点睛】本题考查对随机事件的理解以及频率与概率的联系与区别.解题的关键是理解随机事件是都有可能发生的时间.3、B【分析】根据事件发生的可能性大小判断.【详解】解:A、四个人分成三组,恰有一组有两个人,是必然事件,不合题意;B、购买一张福利彩票,恰好中奖,是随机事件,符合题意;C、在一个只装有白球的盒子里摸出了红球,是不可能事件,不合题意;D、掷一次骰子,向上一面的点数小于7,是必然事件,不合题意;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、D【分析】根据概率的意义去判断即可.【详解】∵“明天降雨的概率是80%”表示明天有降雨的可能性是80%,A说法错误;∵抛一枚硬币正面朝上的概率为”表示正面向上的可能性是B说法错误;∵“彩票中奖的概率是1%”表示中奖的可能性是1%,C说法错误;∵“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近,D说法正确;故选D【点睛】本题考查了概率的意义,正确理解概率的意义是解题的关键.5、C【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题球的总数为1+2=3,红球的数目为1.【详解】解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到红球的概率是:1÷3=故选:C.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率PA)=6、A【分析】列树状图,得到共有6种等可能的情况,和为正数的有4种情况,和为负数的有2种情况,依次判断即可.【详解】解:列树状图如下:共有6种等可能的情况,和为正数的有4种情况,和为负数的有2种情况,A. 数字之和是0的概率为0,故该项符合题意;    B. 数字之和是正数的概率为,故该项不符合题意; C. 卡片上面的数字之和是负数的概率为,故该项不符合题意; D. 数字之和分别是负数、0、正数的概率不相同,故该项不符合题意; 故选:A【点睛】此题考查了列树状图求事件的概率,概率的计算公式,正确列出树状图解答是解题的关键.7、C【分析】从中任意摸出1个球共有3+4=7种结果,其中摸出的球是黑球的有4种结果,直接根据概率公式求解即可.【详解】解:∵装有7个只有颜色不同的球,其中4个黑球,∴从布袋中随机摸出一个球,摸出的球是黑球的概率=故选:C.【点睛】本题考查的是概率公式,熟知随机事件A的概率PA)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.8、A【分析】根据频率之和为1计算出白球的频率,然后再根据“数据总数×频率=频数”,算白球的个数即可.【详解】解:∵摸到红色球、黑色球的频率稳定在0.15和0.45,∴摸到白球的频率为1-0.15-0.45=0.40,∴口袋中白色球的个数可能是60×0.40=24个.故选A.【点睛】本题考查了由频率估计概率,大量反复试验下频率稳定值即概率.根据频率之和为1计算出摸到白球的频率是解答本题的关键.9、D【分析】必然事件: 在一定条件下,一定会发生的事件,叫做必然事件,随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件;根据概念判断即可.【详解】解:事件(1):购买1张福利彩票,中奖,是随机事件,事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6,是必然事件,故选D【点睛】本题考查的是随机事件与必然事件的含义,掌握“利用概念判断随机事件与必然事件”是解本题的关键.10、D【分析】A中掷一枚质地均匀的骰子,出现点数为的结果相等,故可得出掷得的点数为的概率,进而判断选项的正误;B中摸球为随机事件,无法通过小量的重复试验反映必然事件的发生与否,进而判断选项的正误;C中可用列举法求概率,进而判断选项的正误;D中假设人中前个人生日均不相同,而剩余的个人的生日会有与个人的生日有相同的情况,进而判断选项的正误.【详解】解:A掷一枚质地均匀的骰子,掷得的点数为的概率是,此选项错误,不符合题意;B一个袋子里有个球从中随机摸出一个球再放回,小军摸了次,每次摸到的球的颜色都是黄色,这种情况是偶然的,故小军断定袋子里只有黄球是错误的,此选项不符合题意;C连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率是,“一枚硬币正面朝上,一枚硬币反面朝上”的概率是,此选项错误,不符合题意;D在同一年出生的个同学中至少会有个同学的生日相同是正确的,此选项符合题意;故选D.【点睛】本题考察了概率.解题的关键与难点在于了解概率概念与求解.二、填空题1、【分析】画树状图共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,再由概率公式即可求解【详解】解:根据题意画出树状图,得:共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,所以摸出1根红色缎带1根黄色缎带的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件AB的结果数目m,然后根据概率公式计算事件A或事件B的概率是解题的关键.2、②【分析】根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.【详解】①由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以①中的说法是合理的.②由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以②中的说法不合理;③由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以③中的说法是合理的;故答案为:②【点睛】本题考查了根据频率估计概率,理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.3、【分析】先列表求解所有的等可能的结果数,再得到所选代表恰好为1名女生和1名男生的结果数,再利用概率公式进行计算即可.【详解】解:列表如下:         所以:所有的可能的结果数有种,刚好是1名女生和1名男生的结果数有8种,所以所选代表恰好为1名女生和1名男生的概率是: 故答案为:【点睛】本题考查的是利用列表法或画树状图的方法求解等可能事件的概率,掌握“画树状图或列表的方法”是解本题的关键.4、##【分析】根据概率的公式,利用圆的面积除以正方形的面积,即可求解【详解】解:根据题意得:飞镖落在阴影区域内的概率为 故答案为:【点睛】本题考查了概率公式:熟练掌握随机事件A的概率PA)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.5、②③【分析】大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,据此解答可得.【详解】①在大量重复试验时,随着试验次数的增加,可以用一个事件出现的概率估计它的概率,实验种子数量为100,数量太少,不可用于估计概率,故①推断不合理;②随着实验种子数量的增加,A种子出芽率在0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97,故②推断合理;③在同样的地质环境下播种,A 种子的出芽率约为0.97,B种子的出芽率约为0.96,种子的出芽率可能会高于种子,故③正确,故答案为:②③【点睛】此题考查利用频率估计概率,理解随机事件发生的频率与概率之间的关系是解题的关键.三、解答题1、(1)(2)【分析】(1)列出表格展示所有可能的结果,根据表格即可知共有12种可能的情况,再找到两次取出的小球标号和为奇数的情况数,利用概率公式,即可求解;(2)找出两次取出的小球标号和为偶数的情况数,再利用概率公式,即可求解.(1)解:根据题意列出表格,如下表:根据表格可知:共有12种可能的情况,其中两次取出的小球标号和为奇数的情况有8种,故两次取出的小球标号和为奇数的概率为(2)根据表格可知:两次取出的小球标号和为偶数的情况有4种.故两次取出的小球标号和为偶数的概率为 12341 1+2=3,奇数1+3=4,偶数1+4=5,奇数22+1=3,奇数 2+3=5,奇数2+4=6,偶数33+1=4,偶数3+2=5,奇数 3+4=7,奇数44+1=5,奇数4+2=6,偶数4+3=7,奇数 【点睛】2、(1);(2)①;②【分析】(1)直接由概率公式求解即可;(2)①黑色方块所构拼图中是中心对称图形有两种情形,由概率公式求解即可;②画树状图,再由概率公式求解即可.【详解】解:(1)若乙固定在E处,黑色方块甲,可在方格ABC中移动,且当在AB处时,黑色方块构成的拼图是轴对称图形所以移动甲后黑色方块构成的拼图是轴对称图形的概率是(2)①甲、乙在本层移动,一共有 种情况,其中黑色方块所构拼图中是中心对称图形有两种情形:a、甲在B处,乙在F处;b、甲在C处,乙在E处,所以黑色方块所构拼图是中心对称图形的概率是②画树状图如图:由树状图可知,共有9个等可能的结果,黑色方块所构拼图是轴对称图形的结果有5个,∴黑色方块所构拼图是轴对称图形的概率=【点睛】本题考查了列表法与树状图法、轴对称图形、中心对称图形等知识;熟练掌握轴对称图形、中心对称图形,正确画出树状图是解题的关键.3、(1)(2)(3)【分析】(1)根据众数和中位数的概念求解可得;(2)用总人数乘以样本中七、八年级不低于9分的学生人数和所占比例即可得,(3)根据列表法求概率即可.(1)根据抽取的20名七年级学生的成绩找到第10个和第11个成绩都是8,则中位数为8,即根据条形统计图可知9分的有6人,人数最多,则众数为9,即(2)解:∵此次测试成绩不低于9分的七年级学生有8人,八年级学生有9人∴此次测试成绩不低于9分的学生有(人)(3)解:∵七年级得10分的有2人,八年级得10分的有3人设七年级的2人分别为,八年级的3人分别列表如下,      根据列表可知,共有20种等可能结果,其中1名七年级学生和1名八年级学生的情形有12钟则所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率为【点睛】本题考查了求中位数,众数,根据样本估计总体,列表法求概率,掌握以上知识是解题的关键.4、(1)10(2)180°(3)见解析,【分析】(1)根据总数减去表格中其他数据即可求解;(2)根据年龄在“30≤x<40”的人数占总人数的比例乘以360°即可求解;(3)用列表法求概率即可.(1)故答案为:10(2)故答案为:(3)设两名男性用表示,两名女性用表示,根据题意,列表如下,     由上表可知,共有12种等可能的结果,符合条件的结果有8种,P(恰好抽到1名男性和1名女性)=【点睛】本题考查了求扇形统计图的圆心角的度数,求频数,根据列表法求概率,理解题意,掌握以上知识是解题的关键.5、(1)布袋里有1个黄球(2)公平,表格见解析【分析】(1)设布袋里黄球有x个,根据“白球的概率为”可得关于x的分式方程,解之可得答案;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.(1)解:设布袋里黄球有x个,根据题意,得:解得:x=1,经检验:x=1是原分式方程的解,所以布袋里有1个黄球;(2)解:公平;列表如下:  (白,白)(白,黑)(白,黄)(白,白) (白,黑)(白,黄)(黑,白)(黑,白) (黑,黄)(黄,白)(黄,白)(黄,黑) 由表知,共有12种等可能结果,其中两个球中有黄球的有6种情况,两个球中没有黄球的有6种情况,P(小张胜)P(小王胜)∴这个游戏公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比. 

    相关试卷

    初中数学沪科版九年级下册第26章 概率初步综合与测试同步达标检测题:

    这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试同步达标检测题,共20页。试卷主要包含了下列说法正确的是.,下列说法正确的是,下列事件中,属于随机事件的是等内容,欢迎下载使用。

    数学九年级下册第26章 概率初步综合与测试课时练习:

    这是一份数学九年级下册第26章 概率初步综合与测试课时练习,共18页。

    沪科版九年级下册第26章 概率初步综合与测试综合训练题:

    这是一份沪科版九年级下册第26章 概率初步综合与测试综合训练题,共19页。试卷主要包含了在一个不透明的盒子中装有红球,书架上有本小说,下列事件中,属于不可能事件的是,以下事件为随机事件的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map