![2022年精品解析沪科版九年级数学下册第26章概率初步专项测评试卷(含答案详解)第1页](http://img-preview.51jiaoxi.com/2/3/12688665/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析沪科版九年级数学下册第26章概率初步专项测评试卷(含答案详解)第2页](http://img-preview.51jiaoxi.com/2/3/12688665/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析沪科版九年级数学下册第26章概率初步专项测评试卷(含答案详解)第3页](http://img-preview.51jiaoxi.com/2/3/12688665/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪科版九年级下册第26章 概率初步综合与测试课堂检测
展开
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课堂检测,共22页。
沪科版九年级数学下册第26章概率初步专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、为了深化落实“双减”工作,促进中小学生健康成长,教育部门加大了实地督查的力度,对我校学生的作业、睡眠、手机、读物、体质“五项管理”要求的落实情况进行抽样调查,计划从“五项管理”中随机抽取两项进行问卷调查,则抽到“作业”和“手机”的概率为( )A. B. C. D.2、若随意向如图所示的正方形内抛一粒石子,则石子落在阴影部分的概率是( )A.1 B.1 C. D.13、下表记录了一名球员在罚球线上投篮的结果:投篮次数50100150200250400500800投中次数286387122148242301480投中频率0.5600.6300.5800.6100.5920.6050.6020.600根据频率的稳定性,估计这名球员投篮一次投中的概率约是( )A.0.560 B.0.580 C.0.600 D.0.6204、在一个不透明的袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,从袋中任意摸出一个球,是黑球的概率为( )A. B. C. D.5、在进行一个游戏时,游戏的次数和某种结果出现的频率如表所示,则该游戏是什么,其结果可能是什么?下面分别是甲、乙两名同学的答案:游戏次数1002004001000频率0.320.340.3250.332甲:掷一枚质地均匀的骰子,向上的点数与4相差1;乙:在“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”( )A.甲正确,乙错误 B.甲错误,乙正确C.甲、乙均正确 D.甲、乙均错误6、如图,将一个棱长为3的正方体表面涂上颜色,把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为( )A. B. C. D.7、有四张背面完全相同的卡片,正面分别标有数字1、2、3、4,从中同时抽取两张,则下列事件为随机事件的是( )A.两张卡片的数字之和等于1 B.两张卡片的数字之和大于1C.两张卡片的数字之和等于6 D.两张卡片的数字之和大于78、将7个分别标有数字﹣3,﹣2,﹣1,0,1,2,3的小球放到一个不透明的袋子里,它们大小相同,随机摸取一个小球将其标记的数字记为m,则使得二次函数y=﹣x2﹣3x+m﹣2与x轴有交点,且关于x的分式方程有解的概率是( )A. B. C. D.9、一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,从袋子中随机摸出一个球,这个球是白球的概率是( )A. B. C. D.10、不透明的布袋内装有形状、大小、质地完全相同的1个白球,2个红球,3个黑球,若随机摸出一个球恰是黑球的概率为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个不透明的袋子里有3个红球和5个白球,每个球除颜色外都相同,从袋中任意摸出一个球,是红球的可能性_________(填“大于”“小于”或“等于”)是白球的可能性.2、在不透明的口袋里装有4个黑色棋子和若干白色棋子,每个棋子除颜色外完全相同.从口袋里随机摸出一个棋子,摸到黑球的概率是,则白色棋子个数为______.3、在一个不透明的袋子中装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现,摸出黄球的频率稳定在0.30左右,则袋子中黄球的数量可能是 _____个.4、掷一枚质地均匀的硬币8次,其中3次正面朝上,5次反面朝上,现再掷一次,正面朝上的概率是 _____.5、某商场开展购物抽奖活动,抽奖箱内有标号分别为1、2、3、4、5、6、7、8、9、10十个质地、大小相同的小球,顾客从中任意摸出一个球,摸出的球的标号是3的倍数就得奖,顾客得奖概率是______.三、解答题(5小题,每小题10分,共计50分)1、小明每天骑自行车.上学,都要通过安装有红、绿灯的4个十字路口.假设每个路口红灯和绿灯亮的时间相同.(1)小明从家到学校,求通过前2个十字路口时都是绿灯的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)(2)小明从家到学校,通过这4个十字路口时至少有2个绿灯的概率为 .(请直接写出答案)2、钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,尽量呆在家,勤洗手,多运动,多看书,少熬夜.”学校为鼓励学生抗疫期间在家阅读,组织九年级全体同学参加了疫期居家海量读书活动,随机抽查了部分同学读书本数的情况统计如图所示.(1)本次共抽查学生______人,并将条形统计图补充完整;(2)在九年级1000名学生中,读书15本及以上(含15本)的学生估计有多少人?(3)在九年级六班共有50名学生,其中读书达到25本的有两位男生和两位女生,老师要从这四位同学中随机邀请两位同学分享读书心得,试通过画树状图或列表的方法求恰好是两位男生分享心得的概率.3、某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级2班参加球类活动人数统计表项目篮球足球乒乓球排球羽毛球人数a6576根据图中提供的信息,解答下列问题:(1)a= ,b= ;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约 人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.4、新冠病毒在全球肆虐,疫情防控刻不容缓.某校为了解学生对新冠疫情防控知识的了解程度,组织七、八年级学生开展新冠疫情防控知识测试(满分为10分).学校学生处从七、八年级学生中各随机抽取了20名学生的成绩进行了统计.下面提供了部分信息.抽取的20名七年级学生的成绩(单位:分)为:10,10,9,9,9,9,9,9,8,8,8,8,8,8,8,7,7,6,5,5.抽取的40名学生成绩分析表:年级七年级八年级平均分88.1众 数8b中位数a8方 差1.91.89请根据以上信息,解答下列问题:(1)直接写出上表中a,b的值;(2)该校七、八年级共有学生2000人,估计此次测试成绩不低于9分的学生有多少人?(3)在所抽取的七年级与八年级得10分的学生中,随机抽取2名学生在全校学生大会上进行新冠疫情防控知识宣讲,求所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率.5、数字“122”是中国道路交通事故报警电话.为推进“文明交通行动计划”,公安部将每年的12月2日定为“交通安全日”.班主任决定从4名同学(小迎,小冬,小奥,小会)中通过抽签的方式确定2名同学去参加宣传活动.抽签规则:将4名同学的姓名分别写在4张完全相同的卡片正面,把4张卡片的背面朝上,洗匀后放在桌子上,班主任先从中随机抽取一张卡片,记下名字,再从剩余的3张卡片中随机抽取一张,记下名字.(1)“小冬被抽中”是________事件,“小红被抽中”是________事件(填“不可能”、“必然”、“随机”),第一次抽取卡片抽中小会的概率是________;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小奥被抽中的概率. -参考答案-一、单选题1、C【分析】根据列表法或树状图法表示出来所有可能,然后找出满足条件的情况,即可得出概率.【详解】解:将作业、睡眠、手机、读物、体质“五项管理”简写为:业、睡、机、读、体,利用列表法可得: 业睡机读体业 (业,睡)(业,机)(业,读)(业,体)睡(睡,业) (睡,机)(睡,读)(睡,体)机(机,业)(机,睡) (机,读)(机,体)读(读,业)(读,睡)(读,机) (读,体)体(体,业)(体,睡)(体,机)(体,读) 根据表格可得:共有20种可能,满足“作业”和“手机”的情况有两种,∴ 抽到“作业”和“手机”的概率为:,故选:C.【点睛】题目主要考查列表法或树状图法求概率,熟练掌握列表法或树状图法是解题关键.2、A【分析】设正方形ABCD的边长为a,然后根据石子落在阴影部分的概率即为阴影部分面积与正方形面积的比,由此进行求解即可.【详解】解:如图所示,设正方形ABCD的边长为a,∵四边形ABCD是正方形,∴∠C=90°,∴ ,∴,∴石子落在阴影部分的概率是,故选A.【点睛】本题主要考查了几何概率,正方形的性质,扇形面积公式,解题的关键在于能够根据题意得到石子落在阴影部分的概率即为阴影部分面积与正方形面积的比.3、C【分析】根据频率估计概率的方法并结合表格数据即可解答.【详解】解:∵由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.600附近,∴这名球员在罚球线上投篮一次,投中的概率为0.600.故选:C.【点睛】本题主要考查了利用频率估计概率,概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.4、C【分析】从中任意摸出1个球共有3+4=7种结果,其中摸出的球是黑球的有4种结果,直接根据概率公式求解即可.【详解】解:∵装有7个只有颜色不同的球,其中4个黑球,∴从布袋中随机摸出一个球,摸出的球是黑球的概率=.故选:C.【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.5、C【分析】由表可知该种结果出现的概率约为,对甲乙两人所描述的游戏进行判断即可.【详解】由表可知该种结果出现的概率约为∵掷一枚质地均匀的骰子,向上的点数有1、2、3、4、5、6∴向上的点数与4相差1有3、5∴掷一枚质地均匀的骰子,向上的点数与4相差1的概率为∴甲的答案正确又∵“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”概率为∴乙的答案正确综上所述甲、乙答案均正确.故选C.【点睛】本题考查了用频率估计概率,其做法是取多次试验发生的频率稳定值来估计概率.6、B【分析】直接根据题意得出恰有三个面被涂色的有8个,再利用概率公式求出答案.【详解】解:由题意可得:小立方体一共有27个,恰有三个面被涂色的为棱长为3的正方体顶点处的8个小正方体;故取得的小正方体恰有三个面被涂色.的概率为.故选:B.【点睛】此题主要考查了概率公式的应用,正确得出三个面被涂色.小立方体的个数是解题关键.7、C【分析】将两张卡片数字之和所有结果列出有3、4、5、6、7五种情况,再结合必然事件、不可能事件、随机事件的概念对选项依次判断即可.【详解】解:A、两张卡片的数字之和等于1是不可能事件,与题意不符,故错误;B、两张卡片的数字之和大于1是必然事件,与题意不符,故错误;C、两张卡片的数字之和等于6是随机事件,与题意符合,故正确;D、两张卡片的数字之和大于7是不可能事件,与题意不符,故错误;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、B【分析】根据抛物线与x轴有交点,计算出,根据分式方程有解,计算出,再在中找出满足的数,利用概率公式求解.【详解】解:与x轴有交点,则,解得:,有解,则,即,在中,满足且有:,共5个,有概率公式知概率为:,故选:B.【点睛】本题考查了二次函数与坐标轴交点的问题、分式方程、概率,解题的关键是求出的取值范围后,确定满足条件的个数.9、D【分析】根据随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),进行计算即可.【详解】解:∵一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,∴抽到每个球的可能性相同,∴布袋中任意摸出1个球,共有5种可能,摸到白球可能的次数为2次,摸到白球的概率是,∴P(白球).故选:D.【点睛】本题考查了随机事件概率的求法,熟练掌握随机事件概率公式是解题关键.10、B【分析】由在不透明的布袋中装有1个白球,2个红球,3个黑球,利用概率公式直接求解即可求得答案.【详解】解:∵在不透明的布袋中装有1个白球,2个红球,3个黑球,∴从袋中任意摸出一个球,摸出的球是红球的概率是:.故选:B.【点睛】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.二、填空题1、小于【分析】根据“哪种球的数量大哪种球的可能性就大”直接确定答案即可.【详解】解:∵袋子里有3个红球和5个白球,∴红球的数量小于白球的数量,∴从中任意摸出1只球,是红球的可能性小于白球的可能性.故答案为:小于.【点睛】本题考查了可能性的大小,可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.2、12【分析】设白色棋子有x个,根据概率公式列方程求解即可.【详解】解:设白色棋子有x个,根据题意得:,解得:x=12,经检验x=12是原方程的根,故答案为:12.【点睛】本题考查了分式方程的应用,以及概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.3、6【分析】由题意直接根据黄球出现的频率和球的总数,可以计算出黄球的个数.【详解】解:由题意可得,20×0.30=6(个),即袋子中黄球的个数最有可能是6个.故答案为:6.【点睛】本题考查利用频率估计概率,解答本题的关键是明确题意,计算出黄球的个数.4、##【分析】直接利用概率的意义分析得出答案.【详解】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同,∴再次掷出这枚硬币,正面朝上的概率是.故答案为:.【点睛】此题主要考查了概率的意义,正确把握概率的意义是解题关键.5、【分析】结合题意,首先分析3的倍数的数量,再根据概率公式的性质计算,即可得到答案.【详解】根据题意,3的倍数有:3,6,9,共3个数∴摸出的球的标号是3的倍数的概率是:,即顾客得奖概率是:故答案为:.【点睛】本题考查了概率的知识;解题的关键是熟练掌握概率公式,从而完成求解.三、解答题1、(1),见解析(2)【解析】(1)列表如下第一个十字路口\第二个红灯绿灯红灯红红红绿绿灯绿红绿绿∵共有4种等可能情形,满足条件的有1种.∴通过前2个十字路口时都是绿灯的概率.(2)画树状图如图,表示红灯,表示绿灯,∵共有16种等可能情形,满足条件的有11种.小明从家到学校,通过这4个十字路口时至少有2个绿灯的概率为故答案为:【点睛】本题考查了列表法或画树状图法求概率,掌握列表法或画树状图法是解题的关键.2、(1)50,图见解析;(2)500人;(3)图表见解析,【分析】(1)由题意根据C的人数和所占的百分比,可以求得本次共抽查学生人数,然后即可计算出读书10本的人数,从而可以将条形统计图补充完整;(2)由题意根据条形统计图中的数据,可以计算出读书15本及以上(含15本)的学生估计有多少人;(3)根据题意,可以画出相应的树状图,从而可以求出恰好是两位男生分享心得的概率.【详解】解:(1)本次共抽查学生14÷28%=50(人),故答案为:50;50-9-14-7-4=16(人),补全的条形统计图如图所示,(2)(人),即读书15本及以上(含15本)的学生估计有500人.(3)树状图如下图所示,一共有12种可能性,其中恰好是两位男生可能性有2种,故恰好是两位男生分享心得的概率是.【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.3、(1)16,17.5;(2)90;(3)【分析】(1)首先求得总人数,然后根据百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,根据概率公式即可求解.【详解】解:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为:16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案为:90;(3)如图,∵共有20种等可能的结果,两名同学恰为一男一女的有12种情况,∴则P(恰好选到一男一女)==.【点睛】本题考查的是统计图和扇形统计图的综合运用,用列表或树状图求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.4、(1)(2)(3)【分析】(1)根据众数和中位数的概念求解可得;(2)用总人数乘以样本中七、八年级不低于9分的学生人数和所占比例即可得,(3)根据列表法求概率即可.(1)根据抽取的20名七年级学生的成绩找到第10个和第11个成绩都是8,则中位数为8,即,根据条形统计图可知9分的有6人,人数最多,则众数为9,即(2)解:∵此次测试成绩不低于9分的七年级学生有8人,八年级学生有9人∴此次测试成绩不低于9分的学生有(人)(3)解:∵七年级得10分的有2人,八年级得10分的有3人设七年级的2人分别为,八年级的3人分别列表如下, 根据列表可知,共有20种等可能结果,其中1名七年级学生和1名八年级学生的情形有12钟则所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率为【点睛】本题考查了求中位数,众数,根据样本估计总体,列表法求概率,掌握以上知识是解题的关键.5、(1)随机;随机;(2)【分析】(1)根据随机事件和不可能事件的概念及概率公式解答可得;(2)列举出所有情况,看所求的情况占总情况的多少即可.(1)解:“小冬被抽中”是随机事件,“小红被抽中”是随机事件,第一次抽取卡片抽中小会的概率是;(2)解:根据题意可列表如下:(A表示小迎,B表示小冬,C表示小奥,D表示小会)由表可知,共有12种等可能结果,其中小奥被抽中(含有C)的有6种结果,所以小月被选中的概率=.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏地列出所有可能的结果,适用于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
相关试卷
这是一份沪科版第26章 概率初步综合与测试习题,共22页。试卷主要包含了下列说法不正确的是,任意掷一枚骰子,下列事件中,在一个不透明的盒子中装有红球等内容,欢迎下载使用。
这是一份沪科版九年级下册第26章 概率初步综合与测试同步训练题,共22页。试卷主要包含了下列事件中,属于随机事件的是,下列说法正确的是等内容,欢迎下载使用。
这是一份沪科版九年级下册第26章 概率初步综合与测试课后测评,共20页。试卷主要包含了下列事件中,属于必然事件的是,下列说法正确的是,下列事件为随机事件的是,下列说法错误的是,下列事件是必然事件的是等内容,欢迎下载使用。