![2021-2022学年度沪科版九年级数学下册第26章概率初步综合测试练习题(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12686784/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度沪科版九年级数学下册第26章概率初步综合测试练习题(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12686784/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度沪科版九年级数学下册第26章概率初步综合测试练习题(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12686784/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪科版九年级下册第26章 概率初步综合与测试当堂达标检测题
展开
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试当堂达标检测题,共20页。试卷主要包含了下列事件是必然事件的是,下列说法中正确的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、布袋内装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后不放回,再随机摸出一个球,则两次摸出的球都是白球的概率是( )A. B. C. D.2、下列事件,你认为是必然事件的是( )A.打开电视机,正在播广告B.今天星期二,明天星期三C.今年的正月初一,天气一定是晴天D.一个袋子里装有红球1个、白球9个,每个球除颜色外都相同,任意摸出一个球是白色的3、下列事件中,属于必然事件的是( )A.射击运动员射击一次,命中10环B.打开电视,正在播广告C.投掷一枚普通的骰子,掷得的点数小于10D.在一个只装有红球的袋中摸出白球4、下列事件是必然事件的是( )A.明天一定是晴天 B.购买一张彩票中奖C.小明长大会成为科学家 D.13人中至少有2人的出生月份相同5、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中黑球1个,红球2个,从中随机摸出一个小球,则摸出的小球是黑色的概率是( )A. B. C. D.6、有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,随机取出一把钥匙去开任意的一把锁,一次打开锁的概率为( )A. B. C. D.7、下列说法中正确的是( )A.“打开电视,正在播放《新闻联播》”是必然事件B.某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖C.想了解某市城镇居民人均年收入水平,宜采用抽样调查D.我区未来三天内肯定下雪8、某区为了解初中生体质健康水平,在全区进行初中生体质健康的随机抽测,结果如下表:根据抽测结果,下列对该区初中生体质健康合格的概率的估计,最合理的是( ) 累计抽测的学生数n1002003004005006007008009001000体质健康合格的学生数与n的比值0.850.90.930. 910.890.90.910.910.920.92A.0.92 B.0.905 C.0.03 D.0.99、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:抛掷次数m5001000150020002500300040005000“正面向上”的次数n26551279310341306155820832598“正面向上”的频率0.5300.5120.5290.5170.5220.5190.5210.520下面有3个推断:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.其中所有合理推断的序号是( )A.② B.①③ C.②③ D.①②③10、在一个口袋中有2个完全相同的小球,它们的标号分别为1,2从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和是3的概率是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某射击运动员在同一条件下的射击成绩记录如下(结果保留小数点后两位):射击的次数20401002004001000“射中9环以上”的次数153378158321801“射中9环以上”的频率0.760.830.780.790.800.80根据试验所得数据,估计“射中9环以上”的概率是 _____.2、某农科所为了深入践行“绿水青山就是金山银山”的理念,大力开展对植物生长的研究,该农科所在相同条件下做某植物种子发芽率的试验,得到的结果如下表所示:种子个数1002003004005006007008009001000…发芽种子个数94188281349435531625719812902…发芽种子频率(结果保留两位小数)0.940.940.940.870.870.890.890.900.900.90…根据频率的稳定性,估计这种植物种子不发芽的概率是______.3、袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3,绿色卡片两张,标号分别为1,2,若从五张卡片中任取两张,则两张卡片的颜色不同且标号之和小于4的概率为______.4、为了遏制新型冠状病毒疫情的蔓延势头,各地教育部门在推迟各级学校开学时间的同时提出“停课不停学”的要求,各地学校开展了远程网络教学,某校为学生提供四类在线学习方式:在线阅读、在线听课、在线答疑、在线讨论.小宁和小娟都参加了远程网络教学活动,请求出某一时间内两人恰好选择同一种学习方式的概率为______.5、如图,一个转盘,转盘上共有红、白两种不同的颜色,已知红色区域的圆心角为,自由转动转盘,指针落在白色区域的概率是_________.三、解答题(5小题,每小题10分,共计50分)1、将正面分别写着字母A,B,C的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面向上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记下卡片上的字母;放回卡片洗匀后,背面向上放在桌面上,再从卡片中随机抽取一张卡片,记下卡片上的字母.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求取出的两张卡片上的字母相同的概率.2、从2021年开始,重庆市新高考采用“”模式:“3”指全国统考科目,即:语文、数学、外语三个学科为必选科目;“1”为首选科目,即:物理、历史这2个学科中任选1科,且必须选1科;“2”为再选科目,即:化学、生物、思想政治、地理这4个学科中任选2科,且必须选2科.小红在高一上期期末结束后,需要选择高考科目.(1)小红在“首选科目”中,选择历史学科的概率是___________.(2)用列表法或画树状图法,求小红在“再选科目”中选择思想政治和地理这两门学科的概率.3、小宇和小伟玩“石头、剪刀、布”的游戏.这个游戏的规则是:“剪刀”胜“布”,“布”胜“石头”,“石头”胜“剪刀”,手势相同不分胜负.如果二人同时随机出手(分别出三种手势中的一种手势)一次,那么小宇获胜的概率是多少?4、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图.请结合图中所给的信息解答下列问题:(1)这次活动共调查了______人,并补充完整条形统计图;(2)在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为______;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种方式中选一种方式进行支付,请用画树状图或列表的方法,求出两人恰好选择同一种支付方式的概率.5、4张相同的卡片上分别写有数字0、1、、3,将卡片的背面朝上,洗后从中任意抽取1张,将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.(1)第一次抽取的卡片上数字是非负数的概率为______;(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用树状图或列表等方法说明理由) -参考答案-一、单选题1、B【分析】先画出树状图,再根据概率公式即可完成.【详解】所画树状图如下: 事件所有可能的结果数有6种,两次摸出的球都是白球的可能结果数有2种,则两次摸出的球都是白球的概率是:故选:B【点睛】本题考查了利用树状图或列表法求概率,会用树状图或列表法找出所有事件的可能结果及某事件发生的可能结果是关键.2、B【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【详解】解:A、是随机事件,故此选项不符合题意;B、是必然事件,故此选项符合题意;C、是随机事件,故此选项不符合题意;D、是随机事件,故此选项不符合题意;.故选:B.【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、C【分析】根据事件发生的可能性大小判断即可.【详解】解:A、射击运动员射击一次,命中10环,是随机事件;B、打开电视,正在播广告,是随机事件;C、投掷一枚普通的骰子,掷得的点数小于10,是必然事件;D、在一个只装有红球的袋中摸出白球,是不可能事件;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、D【分析】必然事件是在一定条件下,一定会发生的事件;根据定义对选项进行判断,得出结果.【详解】解:A、B、C选项中的事件都是随机事件,不符合要求;D选项中13人中至少有2人的出生月份相同是必然事件,符合要求;故选D.【点睛】本题考查了必然事件.解题的关键在于正确理解必然事件与随机事件的定义.5、B【分析】用黑色的小球个数除以球的总个数即可解题.【详解】解:从中摸出一个小球,共有3种可能,其中摸出的小球是黑色的情况只有1种,故摸出的小球是黑色的概率是:故选:B.【点睛】本题考查概率公式,解题关键是掌握随机事件发生的概率.6、B【分析】根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率.【详解】解:列表得: 锁1锁2钥匙1(锁1,钥匙1)(锁2,钥匙1)钥匙2(锁1,钥匙2)(锁2,钥匙2)钥匙3(锁1,钥匙3)(锁2,钥匙3)由表可知,所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,则P(一次打开锁).故选:B.【点睛】本题考查列表法与树状图法求概率,注意掌握概率=所求情况数与总情况数之比是解题的关键.7、C【分析】根据必然事件,随机事件的定义,判断全面调查与抽样调查,逐项分析判断即可,根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.【详解】A. “打开电视,正在播放《新闻联播》”是随机事件,故该选项不正确,不符合题意;B. 某次抽奖活动中奖的概率为,说明每买100张奖券,不一定有一次中奖,故该选项不正确,不符合题意;C. 想了解某市城镇居民人均年收入水平,宜采用抽样调查,故该选项正确,符合题意;D. 我区未来三天内不一定下雪,故该选项不正确,不符合题意;故选C【点睛】本题考查了必然事件,随机事件,判断全面调查与抽样调查,掌握以上知识是解题的关键. 8、A【分析】根据频数估计概率可直接进行求解.【详解】解:由表格可知:经过大量重复试验,体质健康合格的学生数与抽测的学生数n的比值稳定在0.92附近,所以该区初中生体质健康合格的概率为0.92;故选A.【点睛】本题主要考查用频数估计概率,熟练掌握利用频数估计概率是解题的关键.9、C【分析】根据概率公式和图表给出的数据对各项进行判断,即可得出答案.【详解】解:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.正确;故选:C.【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.10、B【分析】列表展示所有4种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解即可.【详解】解:列表如下: 12123234由表知,共有4种等可能结果,其中两次摸出的小球的标号之和是3的有2种结果,所以两次摸出的小球的标号之和是3的概率为,故选:B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.二、填空题1、0.8【分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【详解】解:根据表格数据可知:根据频率稳定在0.8,估计这名运动员射击一次时“射中9环以上”的概率是0.8.故答案为:0.8.【点睛】本题考查了利用频率估计概率,解决本题的关键是理解当试验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.2、0.1【分析】大量重复试验下“发芽种子”的频率可以估计“发芽种子”的概率,据此求解.【详解】观察表格发现随着实验次数的增多频率逐渐稳定在0.9附近,故“发芽种子”的概率估计值为0.9.∴这种植物种子不发芽的概率是0.1.故答案为:0.1.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.3、【分析】从五张卡片中任取两张的所有可能情况,用列举法求得有10种情况,其中两张卡片的颜色不同且标号之和小于4的有3种情况,从而求得所求事件的概率.【详解】从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1绿1,红1绿2,红2红3,红2绿1,红2绿2,红3绿1,红3绿2,绿1绿2.其中两张卡片的颜色不同且标号之和小于4的有3种情况:红1绿1,红1绿2,红2绿1.故所求的概率为P=;故答案为:.【点睛】本题考查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想,属于基础题.4、##【分析】用分别表示:在线阅读、在线听课、在线答疑、在线讨论,再利用列表的方法求解学习方式中所有的等可能的结果数,再确定两人选择相同的学习方式的结果数,再利用概率公式可得答案.【详解】解:用分别表示:在线阅读、在线听课、在线答疑、在线讨论,列表如下: 由表格信息可得:所有的等可能的结果数有16种,而两人选择相同的学习分式的可能的结果数有4种,所以:某一时间内两人恰好选择同一种学习方式的概率为: 故答案为:【点睛】本题考查的是利用画树状图或列表的方法求解等可能事件的概率,熟练的列表得到所有的等可能的结果数是解本题的关键.5、【分析】先确定白色部分的面积是整个圆的面积的,结合几何概率的含义可得答案.【详解】解:由题意得:白色部分的圆心角为: 所以: 所以自由转动转盘,指针落在白色区域的概率是,故答案为:【点睛】本题考查的是简单随机事件的概率,几何概率的计算,掌握“几何概率的计算与图形面积的关系”是解本题的关键.三、解答题1、(1)列表见解析;(2)【分析】(1)首先根据题意画出表格,然后由表格即可求得所有等可能的结果;(2)由(1)中的表格,可求取出的两张卡片上的字母相同的情况,然后利用概率公式求解即可求得答案.【详解】解:(1)根据题意列表得 ABCABC由表格知共有9种等可能性结果:,,,,,,,,.(2)其中两张卡片上的字母相同有3种结果,.【点睛】此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.2、(1)(2)【分析】(1)根据概率的公式计算可得答案;(2)画树状图,共有12个等可能的结果,该同学恰好选中思想政治和地理化两科的结果有2个,再由概率公式求解即可.(1)解:选择物理、历史共有2中等可能结果,选择历史学科的结果有1种,所以选择历史学科的概率是;(2)假设A表示化学、B表示生物、C表示思想政治、D表示地理,画树状图如下图:共有12个等可能的结果,该同学恰好选中思想政治和地理的结果有2个,所以该同学恰好选中思想政治和地理的概率为.【点睛】此题考查了概率的求法,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,还考查了用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,做题的关键是掌握概率的求法.3、小宇获胜的概率是,见解析.【分析】根据题意画树状图表示出所有等可能的情况,继而解题.【详解】解:画树状图如下,所有机会均等的情况共9种,小宇获胜的概率为:,答:小宇获胜的概率是.【点睛】本题考查用列表法或画树状图表示概率,是基础考点,掌握相关知识是解题关键.4、(1)200;补图见解析;(2)81°;(3)【分析】(1)根据使用支付方式为银行卡的占比为15%,人数为30人即可求得总人数,根据微信支付所占的百分比为乘以总人数即可求得,根据总人数减去微信支付,银行卡,现金,其他方式支付的人数即可求得支付宝支付的人数;(2)先求得支付宝支付的人数所占比乘以360°即可求得扇形圆心角的度数;(3)根据列表法求概率即可.【详解】解:(1)(人)故答案为:200其中使用微信支付的有:(人)使用支付宝支付的有:(人)(2)故答案为:81°(3)将微信记为A,支付宝记为B,银行卡记为C,列表格如下: ABCABC共有9种等可能性的结果,其中两人恰好选择同一种支付方式的结果有3种,则P(两人恰好选择同一种支付方式)【点睛】本题考查了扇形统计图与条形统计图信息关联,求条形统计图某项数据,求扇形统计图圆心角,列表法求概率,掌握以上知识是解题的关键.5、(1)(2)此游戏公平,理由见解析.【分析】(1)利用概率公式求解即可;(2)利用列表法列举出所有可能,进而利用概率公式进而得出甲、乙获胜的概率即可得出答案.(1)解:第一次抽取的卡片上数字是非负数的概率为,故答案为:.(2)解:列表如下: 01-230 1-231-1 -32-223 53-3-2-5 由表可知,共有12种等可能结果,其中结果为非负数的有6种结果,结果为负数的有6种结果,所以甲获胜的概率=乙获胜的概率==,∴此游戏公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
相关试卷
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课时练习,共19页。试卷主要包含了下列事件是必然事件的是,一个不透明的口袋里有红,下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课后作业题,共17页。试卷主要包含了如图,有5张形状,下列事件是必然发生的事件是等内容,欢迎下载使用。
这是一份沪科版九年级下册第26章 概率初步综合与测试同步达标检测题,共17页。试卷主要包含了下列事件中,是必然事件的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)