搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷沪科版九年级数学下册第24章圆专项训练试题(含答案及详细解析)

    精品试卷沪科版九年级数学下册第24章圆专项训练试题(含答案及详细解析)第1页
    精品试卷沪科版九年级数学下册第24章圆专项训练试题(含答案及详细解析)第2页
    精品试卷沪科版九年级数学下册第24章圆专项训练试题(含答案及详细解析)第3页
    还剩25页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试同步练习题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试同步练习题,共28页。试卷主要包含了如图,点A,在圆内接四边形ABCD中,∠A等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、点P(-3,1)关于原点对称的点的坐标是(    A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)2、如图,PAPB是⊙O的切线,AB是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为(   A.70° B.50° C.20° D.40°3、下列四个图案中,是中心对称图形但不是轴对称图形的是(    A. B. C. D.4、如图,点ABC上,,则的度数是(    A.100° B.50° C.40° D.25°5、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为(    A.1cm B.2cm C.3cm D.4cm6、在△ABC中,,点OAB中点.以点C为圆心,CO长为半径作⊙C,则⊙CAB的位置关系是(    A.相交 B.相切C.相离 D.不确定7、如图,的直径,弦,垂足为,若,则    A.5 B.8 C.9 D.108、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是(  )A.1cm B.2cm C.2cm D.4cm9、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为(      A.140° B.100° C.80° D.40°10、如图,PAPB是⊙O的切线,AB为切点,PA=4,则PB的长度为(    A.3 B.4 C.5 D.6第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形ABCD是边长为2,点E、FAD边上的两个动点,且AE=DF,连接BECFBE与对角线AC交于点G,连接DGCF于点H,连接BH,则BH的最小值为_______.2、斛是中国古代的一种量器.据《汉书 .律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为________尺.3、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为______.(结果保留π4、两直角边分别为6、8,那么的内接圆的半径为____________.5、点(2,-3)关于原点的对称点的坐标为_____.三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ABCD是正方形.△ABE是等边三角形,M为对角线 BD(不含BD点)上任意一点,将线段BM绕点B逆时针旋转60°得到BN,连接 ENAMCM.请判断线段 AM 和线段 EN 的数量关系,并说明理由.2、在中,,过点ABC的垂线AD,垂足为DE为线段DC上一动点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90°得到线段AF,连接BF,与直线AD交于点G(1)如图,当点E在线段CD上时,①依题意补全图形,并直接写出BCCF的位置关系;②求证:点GBF的中点.(2)直接写出AEBEAG之间的数量关系.3、如图,在直角坐标系中,将△ABC绕点A顺时针旋转90°.(1)画出旋转后的△AB1C1,并写出B1C1的坐标;(2)求线段AB在旋转过程中扫过的面积.4、如图,在平面直角坐标系中,有抛物线,已知OA =OC =3OB,动点P在过ABC三点的抛物线上.(1)求抛物线的解析式;(2)求过ABC三点的圆的半径;(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,说明理由;5、问题:如图,的直径,点内,请仅用无刻度的直尺,作出边上的高.小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程.作法:如图,①延长于点,延长于点②分别连接并延长相交于点③连接并延长交于点所以线段即为边上的高.(1)根据小芸的作法,补全图形;(2)完成下面的证明.证明:∵的直径,点上,________°.(______)(填推理的依据),________是的两条高线.所在直线交于点∴直线也是的高所在直线.边上的高. -参考答案-一、单选题1、C【分析】据平面直角坐标系中任意一点Pxy),关于原点的对称点是(xy),然后直接作答即可.【详解】解:根据中心对称的性质,可知:点P3,1)关于原点O中心对称的点的坐标为(3,1).故选:C.【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.2、D【分析】首先连接OAOB,由PAPB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.【详解】解:连接OAOBPAPB为⊙O的切线,∴∠OAP=∠OBP=90°,∵∠ACB=70°,∴∠AOB=2∠P=140°,∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.故选:D【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.3、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、C【分析】先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.【详解】∵∠ACB=50°,∴∠AOB=100°,OA=OB∴∠OAB=∠OBA= 40°,故选:C【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5、B【分析】连接OB,过点OOCAB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.【详解】解:连接OB,过点OOCAB于点D,交⊙O于点C,如图所示:AB=8cm,BD=AB=4(cm),由题意得:OB=OC==5cm,RtOBD中,OD=(cm),CD=OC-OD=5-3=2(cm),即水的最大深度为2cm,故选:B.【点睛】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.6、B【分析】根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断的切线,进而可得⊙CAB的位置关系【详解】解:连接,,点OAB中点.CO为⊙C的半径,的切线,CAB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.7、C【分析】连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得【详解】解:如图,连接的直径,弦的半径为,则中,解得故选C【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.8、D【分析】根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.【详解】解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过 设半径为r,即OA=OB=AB=rOM=OA•sin∠OAB=∵圆O的内接正六边形的面积为(cm2), ∴△AOB的面积为(cm2), 解得r=4, 故选:D.【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.9、C【分析】,进而求解的值.【详解】解:由题意知故选C.【点睛】本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.10、B【分析】由切线的性质可推出.再根据直角三角形全等的判定条件“HL”,即可证明,即得出【详解】PAPB是⊙O的切线,AB为切点,∴在中,故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.二、填空题1、##【分析】延长AGCDM,如图1,可证△ADG≌△DGC可得∠GCD=∠DAM,再证△ADM≌△DFC可得DF=DM=AE,可证△ABE≌△ADM,可得H是以AB为直径的圆上一点,取AB中点O,连接ODOH,根据三角形的三边关系可得不等式,可解得DH长度的最小值.【详解】解:延长AGCDM,如图1,ABCD是正方形,AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDCAD=CD,∠ADB=∠BDCDG=DG∴△ADG≌△DGC∴∠DAM=∠DCFAD=CD,∠ADC=∠ADC∴△ADM≌△CDFFD=DMAE=DFAE=DMAB=AD,∠ADM=∠BAD=90°,∴△ABE≌△DAM∴∠DAM=∠ABE∵∠DAM+∠BAM=90°,∴∠BAM+∠ABE=90°,即∠AHB=90°,∴点H是以AB为直径的圆上一点.如图2,取AB中点O,连接ODOHAB=AD=2,OAB中点,AO=1=OHRtAOD中,OD=DHOD-OHDH-1,DH的最小值为-1,故答案为:-1.【点睛】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点.2、【分析】如图,根据四边形CDEF为正方形,可得∠D=90°,CD=DE,从而得到CE是直径,∠ECD=45°,然后利用勾股定理,即可求解.【详解】解:如图, ∵四边形CDEF为正方形,∴∠D=90°,CD=DECE是直径,∠ECD=45°,根据题意得:AB=2.5,即此斛底面的正方形的边长为 尺.故答案为:【点睛】本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键.3、【分析】先求出ABC坐标,再证明三角形BOC是等边三角形,最后根据扇形面积公式计算即可.【详解】CCDOAD∵一次函数的图象与x轴交于点A,与y轴交于点B∴当时,B点坐标为(0,1)时,A点坐标为∵作的外接圆∴线段AB中点C的坐标为,∴三角形BOC是等边三角形C的坐标为故答案为:【点睛】本题主要考查了一次函数的综合运用,求扇形面积.用已知点的坐标表示相应的线段是解题的关键.4、5【分析】直角三角形外接圆的直径是斜边的长.【详解】解:由勾股定理得:AB==10,∵∠ACB=90°,AB是⊙O的直径,∴这个三角形的外接圆直径是10,∴这个三角形的外接圆半径长为5,故答案为:5.【点睛】本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等.5、 (-2,3)【分析】根据“关于原点对称的点的坐标关系,横坐标与纵坐标都互为相反数”,即可求解.【详解】点(2,-3)关于原点的对称点的坐标是(-2,3). 故答案为: (-2,3).【点睛】本题主要考查点关于原点对称,解决本题的关键是要熟练掌握关于原点对称点的坐标的关系.三、解答题1、AM=EN,理由见解析【分析】根据旋转性质和等边三角形的性质可证得∠ABM=∠EBNBM=BNAB=BE,根据全等三角形的判定证明△ABM≌△EBN即可得出结论.【详解】解:AM=EN,理由为:∵△ABE是等边三角形,AB=BE,∠ABE=60°,即∠EBN=∠ABN=60°,∵线段BM绕点B逆时针旋转60°得到BNBM=BN,∠MBN=60°,即∠ABM+∠ABN=60°,∴∠ABM=∠EBN在△ABM和△EBN中,∴△ABM≌△EBNSAS),AM=EN【点睛】本题考查等边三角形的性质、旋转性质、全等三角形的判定与性质,熟练掌握用全等三角形证明线段相等是解答的关键.2、(1)①BCCF;证明见详解;②见详解;(2)2AE2=4AG2+BE2.证明见详解.【分析】(1)①如图所示,BCCF.根据将线段AE逆时针旋转90°得到线段AF,得出AE=AF,∠EAF=90°,可证△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;②根据ADBCBCCF.可得AD∥CF,可证△BDG∽△BCF,可得,得出即可;(2)2AE2=4AG2+BE2,延长BACF延长线于H,根据等腰三角形性质可得AD平分∠BAC,可得∠BAD=∠CAD=,可证△BAG∽△BHF,得出HF=2AG,再证△AEC≌△AFH(AAS),得出EC=FH=2AG,利用勾股定理得出即可.【详解】解:(1)①如图所示,BCCF∵将线段AE逆时针旋转90°得到线段AFAE=AF,∠EAF=90°,∴∠EAC+∠CAF=90°,∴∠BAE+∠EAC=90°,∠ABC=∠ACB=45°,∴∠BAE=∠CAF在△BAE和△CAF中,∴△BAE≌△CAF(SAS),∴∠ABE=∠ACF=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,BCCF②∵ADBCBCCFAD∥CF∴∠BDG=∠BCF=90°,∠BGD=∠BFC∴△BDG∽△BCFADBCBD=DC=BG=GF;(2)2AE2=4AG2+BE2.延长BACF延长线于HADBCAB=ACAD平分∠BAC∴∠BAD=∠CAD=BG=GFAG∥HF∴∠BAG=∠H=45°,∠AGB=∠HFB∴△BAG∽△BHFHF=2AG∵∠ACE=45°,∴∠ACE =∠H∵∠EAC+∠CAF=90°,∠CAF+∠FAH=90°,∴∠EAC=∠FAH在△AEC和△AFH中,∴△AEC≌△AFH(AAS),EC=FH=2AG在Rt△AEF中,根据勾股定理在Rt△ECF中,【点睛】本题考查图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理,掌握图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理是解题关键.3、(1)作图见解析,;(2)【分析】(1)将绕点A顺时针旋转90°得,根据点A、B、C坐标,即可确定出点的坐标;(2)根据勾股定理求出AB的长,由扇形面积公式即可得出答案.【详解】(1)将绕点A顺时针旋转90°得如图所示:(2)由图可知:∴线段AB在旋转过程中扫过的面积为【点睛】本题考查作旋转图形以及扇形的面积公式,掌握旋转的性质及扇形的面积公式是解题的关键.4、(1)y=-x2+2x+3;(2);(3)点P(1,4)或(-2,-5).【分析】(1)3=OC=OA=3OB,故点ABC的坐标分别为:(0,3)、(-1,0)、(3,0),即可求解;(2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),即可求解;(3)分两种情况讨论,利用等腰直角三角形的性质,即可求解.【详解】解:(1)令x=0,则y=3,则点A的坐标为(3,0),根据题意得:OC=3=OA=3OB故点BC的坐标分别为:(-1,0)、(3,0),则抛物线的表达式为:y=ax+1)(x-3)=ax2-2x-3),把(3,0)代入得-3a=3,解得:a=-1,故抛物线的表达式为:y=-x2+2x+3;(2)圆的圆心在BC的中垂线上,故设圆心R(1,m),RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),则圆的半径为:(3)过点AC分别作直线AC的垂线,交抛物线分别为PP1设点P(x,-x2+2x+3),过点PPQ轴于点QOA =OC,∠PAC=90°,∴∠ACO=∠OAC=45°,∵∠PAC=90°,∴∠PAQ=45°,∴△PAQ 是等腰直角三角形,PQ=AQ=xAQ+AO=x+3=-x2+2x+3,解得:(舍去),∴点P(1,4);设点P1(m,-m2+2m+3),过点P1P1D轴于点D同理得△P1CD是等腰直角三角形,且点P1在第三象限,即m<0,P1D=CD=m2-2m-3,DO=-mDO+OC= P1D,即-m+3= m2-2m-3,解得:(舍去),∴点P(-2,-5);综上,点P(1,4)或(-2,-5).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质,等腰直角三角形的判定和性质,圆的基本知识等,其中(3),要注意分类求解,避免遗漏.5、(1)见详解;(2)90,直径所对的圆周角是直角,BD【分析】(1)根据作图步骤作出图形即可;(2)根据题意填空,即可求解.【详解】解:(1)如图,CH为△ABC中AB边上的高;(2)证明:∵的直径,点上,___90_°.(__直径所对的圆周角是直角_)(填推理的依据),_BD__是的两条高线.所在直线交于点∴直线也是的高所在直线.边上的高.故答案为:90,直径所对的圆周角是直角,BD【点睛】本题考查了圆周角定理的推理,三角形的三条高线相交于一点等知识,熟知两个定理,并根据题意灵活应用是解题关键. 

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试课时练习:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时练习,共32页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    初中沪科版第24章 圆综合与测试课后练习题:

    这是一份初中沪科版第24章 圆综合与测试课后练习题,共31页。

    数学九年级下册第24章 圆综合与测试课后练习题:

    这是一份数学九年级下册第24章 圆综合与测试课后练习题,共29页。试卷主要包含了如图,一个宽为2厘米的刻度尺等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map