初中第24章 圆综合与测试课时训练
展开
这是一份初中第24章 圆综合与测试课时训练,共33页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,AB是的直径,弦CD交AB于点P,,,,则CD的长为( )
A. B. C. D.8
2、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为( )
A.3 B. C. D.
3、如图,在中,,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为( )
A.1 B.2 C.3 D.4
4、在半径为6cm的圆中,的圆心角所对弧的弧长是( )
A.cm B.cm C.cm D.cm
5、点P(3,﹣2)关于原点O的对称点的坐标是( )
A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)
6、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).
A.20° B.25° C.30° D.40°
7、如图,在Rt△ABC中,,,点D、E分别是AB、AC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为;③BP存在最小值为;④点P运动的路径长为.其中,正确的( )
A.①②③ B.①②④ C.①③④ D.②③④
8、在下列图形中,既是中心对称图形又是轴对称图形的是( )
A. B.
C. D.
9、下列图形中,既是中心对称图形又是抽对称图形的是( )
A. B. C. D.
10、下列汽车标志中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个正多边形的中心角是,则这个正多边形的边数为________.
2、如图,PA,PB是的切线,切点分别为A,B.若,,则AB的长为______.
3、如图,过⊙O外一点P,作射线PA,PB分别切⊙O于点A,B,,点C在劣弧AB上,过点C作⊙O的切线分别与PA,PB交于点D,E.则______度.
4、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是___________.
5、龙湖实验中学的操场有4条等宽的跑道,每条跑道是由两条直跑道和两个半圆形弧道连接而成,请根据小泓与瞿老师的对话计算每条跑道的宽度是______米.
三、解答题(5小题,每小题10分,共计50分)
1、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A=∠O.
已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与A、C不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC=.
(1)求弦AC的长.
(2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.
(3)当OE=1时,求点A与点D之间的距离(直接写出答案).
2、如图,点A是外一点,过点A作出的一条切线.(使用尺规作图,作出一条即可,不要求写出作法,不要求证明,但要保留作图痕迹)
3、如图 1,O为直线 DE上一点,过点 O在直线 DE上方作射线 OC,∠EOC=130°.将直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条边 OA在射线 OD上,另一边 OB在直线 DE上方,将直角三角板绕点 O 按每秒 5°的速度逆时针旋转一周,设旋转时间为t 秒.
(1)如图2,当t=4 时,∠AOC= ,∠BOE= ,∠BOE﹣∠AOC= ;
(2)当三角板旋转至边 AB与射线 OE相交时(如图 3),试猜想∠AOC与∠BOE的数量关系,并说明理由;
(3)在旋转过程中,是否存在某个时刻,使得射线 OA、OC、OD 中的某一条射线是另两条射线所成夹角的角平分线?若存在,请直接写出 t 的取值,若不存在,请说明理由.
4、如图1,BC是⊙O的直径,点A,P在⊙O上,且分别位于BC的两侧(点A、P均不与点B、C重合),过点A 作AQ⊥AP,交PC 的延长线于点Q,AQ交⊙O于点D,已知AB=3,AC=4.
(1)求证:△APQ∽△ABC.
(2)如图2,当点C为的中点时,求AP的长.
(3)连结AO,OD,当∠PAC与△AOD的一个内角相等时,求所有满足条件的AP的长.
5、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF.
(1)若,求的度数;
(2)若,求的大小;
(3)猜想CF,BF,AF之间的数量关系,并证明.
-参考答案-
一、单选题
1、A
【分析】
过点作于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.
【详解】
解:如图,过点作于点,连接,
AB是的直径,,,
,
在中,
故选A
【点睛】
本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.
2、A
【分析】
分析:连接OA、OB,根据圆周角定理,易知∠AOB=60°;因此△ABO是等边三角形,即可求出⊙O的半径.
【详解】
解:连接BO,并延长交⊙O于D,连结DC,
∵∠A=30°,
∴∠D=∠A=30°,
∵BD为直径,
∴∠BCD=90°,
在Rt△BCD中,BC=3,∠D=30°,
∴BD=2BC=6,
∴OB=3.
故选A.
【点睛】
本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质是解题的关键.
3、B
【分析】
由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2.
【详解】
由题意以及旋转的性质知AD=AB,∠BAD=60°
∴∠ADB=∠ABD
∵∠ADB+∠ABD+∠BAD=180°
∴∠ADB=∠ABD=60°
故为等边三角形,即AB= AD =BD=2
则CD=BC-BD=4-2=2
故选:B.
【点睛】
本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形.
4、C
【分析】
直接根据题意及弧长公式可直接进行求解.
【详解】
解:由题意得:的圆心角所对弧的弧长是;
故选C.
【点睛】
本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.
5、B
【分析】
根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.
【详解】
解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).
故选:B.
【点睛】
本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.
6、B
【分析】
连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.
【详解】
解:连接OA,如图,
∵PA是⊙O的切线,
∴OA⊥AP,
∴∠PAO=90°,
∵∠P=40°,
∴∠AOP=50°,
∵OA=OB,
∴∠B=∠OAB,
∵∠AOP=∠B+∠OAB,
∴∠B=∠AOP=×50°=25°.
故选:B.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
7、B
【分析】
根据,,点D、E分别是AB、AC的中点.得出∠DAE=90°,AD=AE=,可证∠DAB=∠EAC,再证△DAB≌△EAC(SAS),可判断①△AEC≌△ADB正确;作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,根据△AEC≌△ADB,得出∠DBA=∠ECA,可证∠P=∠BAC=90°,CP为⊙A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判断②CP存在最大值为正确;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判断③BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,可求∠ACE=30°,根据圆周角定理得出∠AOP=2∠ACE=60°,当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,可得∠ABD=30°根据圆周角定理得出∠AOP′=2∠ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,L可判断④点P运动的路径长为正确即可.
【详解】
解:∵,,点D、E分别是AB、AC的中点.
∴∠DAE=90°,AD=AE=,
∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,
∴∠DAB=∠EAC,
在△DAB和△EAC中,
,
∴△DAB≌△EAC(SAS),
故①△AEC≌△ADB正确;
作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,
∵△AEC≌△ADB,
∴∠DBA=∠ECA,
∴∠PBA+∠P=∠ECP+∠BAC,
∴∠P=∠BAC=90°,
∵CP为⊙A的切线,
∴AE⊥CP,
∴∠DPE=∠PEA=∠DAE=90°,
∴四边形DAEP为矩形,
∵AD=AE,
∴四边形DAEP为正方形,
∴PE=AE=3,
在Rt△AEC中,CE=,
∴CP最大=PE+EC=3+,
故②CP存在最大值为正确;
∵△AEC≌△ADB,
∴BD=CE=,
在Rt△BPC中,BP最小=,
BP最短=BD-PD=-3,
故③BP存在最小值为不正确;
取BC中点为O,连结AO,OP,
∵AB=AC=6,∠BAC=90°,
∴BP=CO=AO=,
当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,
∴∠ACE=30°,
∴∠AOP=2∠ACE=60°,
当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,
∴∠ABD=30°,
∴∠AOP′=2∠ABD=60°,
∴点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,
∵∠POP=∠POA+∠AOP′=60°+60°=120°,
∴L.
故④点P运动的路径长为正确;
正确的是①②④.
故选B.
【点睛】
本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键.
8、B
【分析】
根据中心对称图形与轴对称图形的定义解答即可.
【详解】
解:A.是轴对称图形,不是中心对称图形,不符合题意;
B既是中心对称图形又是轴对称图形,符合题意;
C. 是轴对称图形,不是中心对称图形,不符合题意;
D. 既不是中心对称图形,也不是轴对称图形,不符合题意.
故选B.
【点睛】
本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.
9、B
【详解】
解:.是轴对称图形,不是中心对称图形,故此选项不符合题意;
.既是轴对称图形,也是中心对称图形,故此选项符合题意;
.是轴对称图形,不是中心对称图形,故此选项不符合题意;
.不是轴对称图形,是中心对称图形,故此选项不符合题意;
故选:B.
【点睛】
本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
10、C
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;
B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
C、是轴对称图形,是中心对称图形,故此选项符合题意;
D、不是轴对称图形,是中心对称图形,故此选项不符合题意;
故选:C.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
二、填空题
1、九9
【分析】
根据正多边形的每个中心角相等,且所有中心角的度数和为360°进行求解即可.
【详解】
解:设这个正多边形的边数为n,
∵这个正多边形的中心角是40°,
∴,
∴,
∴这个正多边形是九边形,
故答案为:九.
【点睛】
本题主要考查了正多边形的性质,熟知正多边形中心角的度数和为360度是解题的关键.
2、3
【分析】
由切线长定理和,可得为等边三角形,则.
【详解】
解:连接,如下图:
,分别为的切线,
,
为等腰三角形,
,
,
为等边三角形,
,
,
.
故答案为:3.
【点睛】
本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.
3、65
【分析】
连接OA,OC,OB,根据四边形内角和可得,依据切线的性质及角平分线的判定定理可得DO平分,EO平分,再由各角之间的数量关系可得,,根据等量代换可得,代入求解即可.
【详解】
解:如图所示:连接OA,OC,OB,
∵PA、PB、DE与圆相切于点A、B、E,
∴,,,
∵,
∴,
∵,
∴DO平分,EO平分,
∴,,
∴,,
∴,
故答案为:65.
【点睛】
题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.
4、
【分析】
绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.
【详解】
解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是
故答案为:
【点睛】
本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键.关于原点对称的两个点,横坐标、纵坐标分别互为相反数.
5、
【分析】
设跑道的宽为米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可.
【详解】
解:设跑道的宽为米,由对称性设内圈两个半圆形弧道拼成的圆的半径为,
根据题意可得:,
解得:,
故答案是:.
【点睛】
本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解.
三、解答题
1、
(1)8
(2)
(3)或.
【分析】
(1)过点O作OH⊥AC于点H,由垂径定理可得AH=CH=AC,由锐角三角函数和勾股定理可求解;
(2)分两种情况讨论,由相似三角形的性质可求AG,EG,CG的长,即可求解;
(3)分两种情况讨论,由相似三角形和勾股定理可求解.
(1)
如图2,过点O作OH⊥AC于点H,
由垂径定理得:AH=CH=AC,
在Rt△OAH中,,
∴设OH=3x,AH=4x,
∵OH2+AH2=OA2,
∴(3x)2+(4x)2=52,
解得:x=±1,(x=﹣1舍去),
∴OH=3,AH=4,
∴AC=2AH=8;
(2)
如图2,过点O作OH⊥AC于H,过E作EG⊥AC于G,
∵∠DEO=∠AEC,
∴当△DOE与△AEC相似时可得:∠DOE=∠A或者∠DOE=∠ACD;
,
∴∠ACD≠∠DOE
∴当△DOE与△AEC相似时,不存在∠DOE=∠ACD情况,
∴当△DOE与△AEC相似时,∠DOE=∠A,
∴OD∥AC,
∴,
∵OD=OA=5,AC=8,
∴,
∴,
∵∠AGE=∠AHO=90°,
∴GE∥OH,
∴△AEG∽△AOH,
∴,
∴,
∴,
∴,,
在Rt△CEG中,;
(3)
当点E在线段OA上时,如图3,过点E作EG⊥AC于G,过点O作OH⊥AC于H,延长AO交⊙O于M,连接AD,DM,
由(1)可得 OH=3,AH=4,AC=8,
∵OE=1,
∴AE=4,ME=6,
∵EG∥OH,
∴△AEG∽△AOH,
∴,
∴AG=,EG=,
∴GC=,
∴EC===,
∵AM是直径,
∴∠ADM=90°=∠EGC,
又∵∠M=∠C,
∴△EGC∽△ADM,
∴,
∴,
∴AD=2;
当点E在线段AO的延长线上时,如图4,延长AO交⊙O于M,连接AD,DM,过点E作EG⊥AC于G,
同理可求EG=,AG=,AE=6,GC=,
∴EC===,
∵AM是直径,
∴∠ADM=90°=∠EGC,
又∵∠M=∠C,
∴△EGC∽△ADM,
∴,
∴,
∴AD=,
综上所述:AD的长是或
【点睛】
本题考查了垂径定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性质与判定,圆周角定理,正切的作出辅助线是解题的关键.
2、见解析
【分析】
先作线段的垂直平分线.确定的中点,再以中点为圆心,一半为半径作圆交于点,然后作直线,则根据圆周角定理可得为所求.
【详解】
如图,直线AB就是所求作的,
(作法不唯一,作出一条即可,需要有作图痕迹)
【点睛】
本题考查了作图复杂作图,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
3、
(1)30°,70°,40°;
(2)∠AOC-∠BOE=40°,理由见解析;
(3)t 的取值为5或20或62
【分析】
(1)先根据已知求出∠DOC、∠BOC,再求出当t=4时的旋转角的度数,再利用角的和与差求解即可;
(2)设旋转角为x,用x表示∠AOC和∠BOE,即可得出结论;
(3)分①OA为∠DOC的平分线;②OC为∠DOA的平分线;③OD为∠COA的平分线三种情况,利用角平分线定义和旋转性质求出旋转角即可.
(1)
解:∵∠EOC=130°,∠AOB=∠BOE=90°,
∴∠DOC=180°-130°=50°,∠BOC=130°-90°=40°,
当t=4时,旋转角4×5°=20°,
∴∠AOC=∠DOC-∠DOA=50°-20°=30°,∠BOE=90°-20°=70°,
∠BOE-∠AOC=70°-30°=40°,
故答案为:30°,70°,40°;
(2)
解:∠AOC-∠BOE=40°,理由为:
设旋转角为x,当三角板旋转至边 AB与射线 OE相交时,
∠AOC=x-50°,∠BOE=x-90°,
∴∠AOC-∠BOE=(x-50°)-(x-90°)=40°;
(3)
解:存在,
①当OA为∠DOC的平分线时,旋转角5t =∠DOC=25,
∴t=5;
②当OC为∠DOA的平分线时,旋转角5t =2∠DOC=100,
∴t=20;
③当OD为∠COA的平分线时,360-5t=∠DOC=50,
∴t=62,
综上,满足条件的t 的取值为5或20或62.
【点睛】
本题考查角平分线的定义、旋转的性质、角的运算,熟练掌握旋转性质,利用分类讨论思想求解是解答的关键.
4、(1)见解析;(2)(3)当,时,;当时,.
【分析】
(1)通过证,,即可得;
(2)先证是等腰直角三角形,求,通过,得,求CQ长,即可求PQ得长,通过,即可得,即可求AP.
(3)分类讨论, ,,,三种情况讨论,再通过勾股定理和相似即可求解.
【详解】
证明:(1)∵AQ⊥AP
∴
∵BC是⊙O的直径
∴
∴
∵
∴
(2)如图,连接CD,PD
∵BC是⊙O的直径
∴
∵AB=3,AC=4
∴利用勾股定理得:,即直径为5
∵
∴
∴DP是⊙O的直径,且DP=BC=5
∵点C为的中点
∴CD=PC
∵
∴
∴是等腰直角三角形
∴利用勾股定理得:,则
∵,
∴
∵
∴
∴,即:
∴
∴
∵
∴,即:
∴
(3)连接AO,OD,OP,CD,OD交AC于点M
∵(已证)
∴OD,OP共线,为⊙O的直径
情况一:当时
∵,
∴
∴AP=PC
∵
∴
∴
∴即
∵AP=PC
∴
∴在中,
∴
∴在中,
情况二:当时,
∵
∴
∴
同情况一:
情况三:当时
∵,
∴
∴,
∵OA=OD
∴
∴
∴
综上所述,当,时,;当时,.
【点睛】
本题考查了圆周角定理,垂径定理,圆的内接四边形的性质,勾股定理,相似三角形的性质和判定等,是圆的综合题。解答此题的关键是,通过圆的性质,找到角与角、边与边之间的关系.
5、(1)20°;(2);(3)AF= CF+BF,理由见解析
【分析】
(1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,,∠CBF=∠ABE-∠ABC=20°;
(2)同(1)求解即可;
(3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F、C、G三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF.
【详解】
解:(1)∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠ABC=60°,
由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,
∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,
∴,
∴∠CBF=∠ABE-∠ABC=20°;
(2)∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠ABC=60°,
由折叠的性质可知,,AC=AE,
∴ ,AB=AE,
∴,
∴;
(3)AF= CF+BF,理由如下:
如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,
∴AF=AG,∠FAG=60°,∠ACG=∠ABF,BF=CG
在△AEF和△ACF中,
,
∴△AEF≌△ACF(SAS),
∴∠AFE=∠AFC,
∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,
∴∠BFD=∠ACD=60°,
∴∠AFE=∠AFC=60°,
∴∠BFC=120°,
∴∠BAC+∠BFC=180°,
∴∠ABF+∠ACF=180°,
∴∠ACG+∠ACF=180°,
∴F、C、G三点共线,
∴△AFG是等边三角形,
∴AF=GF=CF+CG=CF+BF.
【点睛】
本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.
相关试卷
这是一份沪科版九年级下册第24章 圆综合与测试习题,共33页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
这是一份初中数学第24章 圆综合与测试同步达标检测题,共33页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试随堂练习题,共30页。试卷主要包含了已知⊙O的半径为4,,则点A在,下列语句判断正确的是,如图,一个宽为2厘米的刻度尺等内容,欢迎下载使用。