搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷沪科版九年级数学下册第24章圆必考点解析试题(精选)

    精品试卷沪科版九年级数学下册第24章圆必考点解析试题(精选)第1页
    精品试卷沪科版九年级数学下册第24章圆必考点解析试题(精选)第2页
    精品试卷沪科版九年级数学下册第24章圆必考点解析试题(精选)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试练习

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试练习,共29页。
    沪科版九年级数学下册第24章圆必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是(    A.直径所对圆周角为 B.如果点在圆上,那么点到圆心的距离等于半径C.直径是最长的弦 D.垂直于弦的直径平分这条弦2、平面直角坐标系中点关于原点对称的点的坐标是(    A. B. C. D.3、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是(  )A.1cm B.2cm C.2cm D.4cm4、如图,的直径,弦,垂足为,若,则    A.5 B.8 C.9 D.105、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为(    A.30° B.60°C.90° D.120°6、的边经过圆心与圆相切于点,若,则的大小等于(    A. B. C. D.7、如图,在中,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于(    A. B. C. D.8、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为(    A.3 B. C. D.9、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻AB,在小路l上有一座亭子PAP分别位于B的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻AB原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是(   A.20 m B.20mC.(20 - 20)m D.(40 - 20m10、如图,AB是⊙O的直径,弦,则阴影部分图形的面积为(    A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△ABC′.则图中阴影部分的面积为_____.2、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留3、已知正多边形的半径与边长相等,那么正多边形的边数是______.4、龙湖实验中学的操场有4条等宽的跑道,每条跑道是由两条直跑道和两个半圆形弧道连接而成,请根据小泓与瞿老师的对话计算每条跑道的宽度是______米.5、如图,已知,在中,.将绕点A逆时针旋转一个位置,连接BDCE交于点F(I)求证:(2)若四边形ABFE为菱形,求的值;(3)在(2)的条件下,若,直接写出CF的值.三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ABCD内接于⊙OAC是直径,点C是劣弧BD的中点.(1)求证:(2)若,求BD2、如图1,在中,,点分别在边上,,连接.点在线段上,连接于点(1)①比较的大小,并证明;②若,求证:(2)将图1中的绕点逆时针旋转,如图2.若的中点,判断是否仍然成立.如果成立,请证明;如果不成立,请说明理由.3、如图,以四边形的对角线为直径作圆,圆心为,点上,过点的延长线于点,已知平分(1)求证:切线;(2)若,求的半径和的长.4、新定义:如图①,已知,在内部画射线OC,得到三个角,分别为.若这三个角中有一个角是另外一个角的2倍,则称射线OC的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)(阅读理解)(1)角的平分线______这个角的“幸运线”;(填“是”或“不是”)(初步应用)(2)如图①,,射线OC的“幸运线”,则的度数为______;(直接写出答案)(解决问题)(3)如图②,已知,射线OMOA出发,以每秒10°的速度绕O点顺时针旋转,同时,射线ONOB出发,以每秒15°的速度绕O点顺时针旋转,设运动的时间为t.若OMONOB三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求运动的时间t的值.(实际运用)(4)周末,小丽帮妈妈到附近的“中通快递”网点取包裹,出家门时小丽看了看时钟,恰好是下午3点整,取好包裹回到家时,小丽再看了看时钟,还没有到下午3点半,但此时分针与时针恰好重合.问小丽帮妈妈取包裹用了多少分钟?5、如图,在△ABC中,∠ACB=90°,AC=BCDAB边上一点(与AB不重合),连接CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连接DEBE(1)求证:△ACD≌△BCE(2)若BE=5,DE=13,求AB的长 -参考答案-一、单选题1、A【分析】定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.【详解】A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;B、C选项,根据圆的定义可以得到;D选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.2、B【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:平面直角坐标系中点关于原点对称的点的坐标是故选B【点睛】本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.3、D【分析】根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.【详解】解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过 设半径为r,即OA=OB=AB=rOM=OA•sin∠OAB=∵圆O的内接正六边形的面积为(cm2), ∴△AOB的面积为(cm2), 解得r=4, 故选:D.【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.4、C【分析】连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得【详解】解:如图,连接的直径,弦的半径为,则中,解得故选C【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5、B【分析】由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.【详解】解:因为每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°,所以每次旋转相同角度 .故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.6、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.【详解】解:连接 与圆相切于点故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.7、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.【详解】解:连接CD,如图所示:∵点DAB的中点,在Rt△ACB中,由勾股定理可得故选D.【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.8、A【分析】分析:连接OA、OB,根据圆周角定理,易知∠AOB=60°;因此△ABO是等边三角形,即可求出⊙O的半径.【详解】解:连接BO,并延长交⊙OD,连结DC∵∠A=30°,∴∠D=∠A=30°,BD为直径,∴∠BCD=90°,在Rt△BCD中,BC=3,∠D=30°,BD=2BC=6,OB=3.故选A.【点睛】本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质是解题的关键.9、D【分析】根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当OP共线时,距离最短,计算即可.【详解】∵人工湖面积尽量小,∴圆以AB为直径构造,设圆心为O过点BBC,垂足为CAP分别位于B的西北方向和东北方向,∴∠ABC=∠PBC=∠BOC=∠BPC=45°,OC=CB=CP=20,OP=40,OB==∴最小的距离PE=PO-OE=40 - 20m),故选D【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.10、D【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,然后证明△OCE≌△BDE,得到求出扇形COB面积,即可得出答案.【详解】解:设ABCD交于点EAB是⊙O的直径,弦CDABCD=2,如图,CE=CD=,∠CEO=∠DEB=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴∠OCE=30°,又∵,即在△OCE和△BDE中,∴△OCE≌△BDEAAS),∴阴影部分的面积S=S扇形COB=故选D.【点睛】本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.二、填空题1、【分析】利用勾股定理求出ACAB的长,根据阴影面积等于求出答案.【详解】解:由旋转得=∠BAC=30°,∵∠ABC=90°,∠BAC=30°,BC=1,AC=2BC=2,AB=∴阴影部分的面积==,故答案为:【点睛】此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.2、【分析】已知扇形的圆心角为,半径为2,代入弧长公式计算.【详解】解:依题意,n=r=2,∴扇形的弧长=故答案为:【点睛】本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=3、六【分析】设这个正多边形的边数为n,根据题意可知OA=OB=AB,则△OAB是等边三角形,得到∠AOB=60°,则,由此即可得到答案.【详解】解:设这个正多边形的边数为n∵正多边形的半径与边长相等,OA=OB=AB∴△OAB是等边三角形,∴∠AOB=60°,∴正多边形的边数是六,故答案为:六.【点睛】本题主要考查了正多边形和圆,等边三角形的性质与判定,熟知相关知识是解题的关键.4、【分析】设跑道的宽为米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可.【详解】解:设跑道的宽为米,由对称性设内圈两个半圆形弧道拼成的圆的半径为根据题意可得:解得:故答案是:【点睛】本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解.5、(1)见解析;(2)120°;(3)【分析】(1)根据旋转的性质和全等三角形的判定解答即可;(2)根据等腰三角形的性质求得∠ABD=90°-,∠BAE=+30°,根据菱形的邻角互补求解即可;(3)连接AF,根据菱形的性质和全等三角形的性质可求得∠FAC=45°,∠FCA=30°,过FFGACG,设FG=x,根据等腰直角三角形的性质和含30°角的直角三角形的性质求解即可.【详解】解:(1)由旋转得:AB=ADAC=AE,∠BAD=∠CAE=AB=ACAB=AC=AD=AE在△ABD和△ACE中,∴△ABD≌△ACESAS);(2)∵AB=AD,∠BAD=,∠BAC=30°,∴∠ABD=(180°-∠BAD)÷2=(180°-)÷2=90°-,∠BAE=+30°,∵四边形ABFE是菱形,∴∠BAE+∠ABD=180°,即+30°+90°-=180°,解得:=120°;(3)连接AF∵四边形ABFE是菱形,∠BAE=+30°=150°,∴∠BAF=BAE=75°,又∠BAC=30°,∴∠FAC=75°-30°=45°,∵△ABD≌△ACE∴∠FCA=∠ABD=90°-=30°,FFGACG,设FG=x在Rt△AGF中,∠FAG=45°,∠AGF=90°,∴∠AFG=∠FAG=45°,∴△AGF是等腰直角三角形,AG=FG=x在在Rt△AGF中,∠FCG=30°,∠FGC=90°,CF=2FG=2xAC=AB=2,又AG+CG=AC解得:CF=2x= 【点睛】本题考查全等三角形的判定与性质、旋转的性质、菱形的性质、等腰三角形的判定与性质、含30°角的直角三角形的性质、三角形的内角和定理、解一元一次方程等知识,熟练掌握相关知识的联系与运用是解答的关键.三、解答题1、(1)见详解;(2)【分析】(1)由题意及垂径定理可知AC垂直平分BD,进而问题可求解;(2)由题意易得,然后由(1)可知△ABD是等边三角形,进而问题可求解.【详解】(1)证明:∵AC是直径,点C是劣弧BD的中点,AC垂直平分BD(2)解:∵∴△ABD是等边三角形,【点睛】本题主要考查垂径定理、等边三角形的性质与判定及圆周角定理,熟练掌握垂径定理、等边三角形的性质与判定及圆周角定理是解题的关键.2、(1)①∠CAE=∠CBD,理由见解析;②证明见解析;(2)AE=2CF仍然成立,理由见解析【分析】(1)①只需要证明△CAE≌△CBD即可得到∠CAE=∠CBD②先证明∠CAH=∠BCF,然后推出∠BDC=∠FCD,∠CAE=∠CBD=∠BCF,得到CF=DFCF=BF,则BD=2CF,再由△CAE≌△CBD,即可得到AE=2BD=2CF(2)如图所示延长DCG使得,DC=CG,连接BG,只需要证明△ACE≌△BCG得到AE=BG,再由CF是△BDG的中位线,得到BG=2CF,即可证明AE=2CF【详解】解:(1)①∠CAE=∠CBD,理由如下:在△CAE和△    CBD中,∴△CAE≌△CBDSAS),∴∠CAE=∠CBD②∵CFAE∴∠AHC=∠ACB=90°,∴∠CAH+∠ACH=∠ACH+∠BCF=90°,∴∠CAH=∠BCF∵∠DCF+∠BCF=90°,∠CDB+∠CBD=90°,∠CAE=∠CBD∴∠BDC=∠FCD,∠CAE=∠CBD=∠BCFCF=DFCF=BFBD=2CF又∵△CAE≌△CBDAE=2BD=2CF(2)AE=2CF仍然成立,理由如下:如图所示延长DCG使得,DC=CG,连接BG由旋转的性质可得,∠DCE=∠ACB=90°,∴∠ACD+∠BCD=∠BCE+∠BCD,∠ECG=90°,∴∠ACD=∠BCE∴∠ACD+∠DCE=∠BCE+∠ECG,即∠ACE=∠BCG又∵CE=CD=CGAC=BC∴△ACE≌△BCGSAS),AE=BGFBD的中点,CD=CGCF是△BDG的中位线,BG=2CFAE=2CF【点睛】本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,旋转的性质,三角形中位线定理,熟知全等三角形的性质与判定条件是解题的关键.3、(1)证明见解析(2)【分析】(1)连接OA,根据已知条件证明OAAE即可解决问题;(2)取CD中点F,连接OF,根据垂径定理可得OFCD,所以四边形AEFO是矩形,利用勾股定理即可求出结果.(1)证明:如图,连接OAAECD∴∠DAE+∠ADE=90°.DA平分∠BDE∴∠ADE=∠ADO又∵OA=OD∴∠OAD=∠ADO∴∠DAE+∠OAD=90°,OAAEAE是⊙O切线;(2)解:如图,取CD中点F,连接OFOFCD于点F∴四边形AEFO是矩形,CD=6,DF=FC=3.RtOFD中,OF=AE=4,RtAED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2,AD的长是【点睛】本题考查了切线的判定与性质,垂径定理,圆周角定理,勾股定理,解决本题的关键是掌握切线的判定与性质.4、(1)是;(2)16°或24°或32°;(3)2或;(4)【分析】(1)根据幸运线定义即可求解;(2)分3种情况,根据幸运线定义得到方程求解即可;(3)根据幸运线定义得到方程求解即可;(4)利用时针1分钟走,分针1分钟走,可解答问题.【详解】解:(1)一个角的平分线是这个角的“幸运线”;故答案为:是;(2)①设∠AOC=x,则∠BOC=2x由题意得,x+2x=48°,解得x=16°,②设∠AOC=x,则∠BOC=x由题意得,x+x=48°,解得x=24°,③设∠AOC=x,则∠BOC=x由题意得,x+x=48°,解得x=32°,故答案为:16°或24°或32°;(3)OB是射线OMON的幸运线,则∠BOM=MON,即50-10t=(50-10t+15t),解得t=2;BOM=MON,即50-10t=(50-10t+15t),解得t=BOM=MON,即50-10t=(50-10t+15t),解得t=故t的值是2或(4)时针1分钟走,分针1分钟走设小丽帮妈妈取包裹用了x分钟,则有0.5x+3×30=6x,解得:x=【点睛】本题考查了旋转的性质,幸运线定义,学生的阅读理解能力及知识的迁移能力.理解“幸运线”的定义是解题的关键.5、(1)见解析;(2)17【分析】(1)由旋转的性质可得CDCE,∠DCE=90°=∠ACB,由“SAS”可证△ACD≌△BCE(2)由∠ACB=90°,ACBC,可得∠CAB=∠CBA=45°,再由△ACD≌△BCE,得到BEAD=5,∠CBE=∠CAD=45°,则∠ABE=∠ABC+∠CBE=90°,然后利用勾股定理求出BD的长即可得到答案.【详解】解:(1)证明:∵将线段CD绕点C按逆时针方向旋转90°得到线段CECDCE,∠DCE=90°=∠ACB∴∠ACD+∠BCD=∠BCE+∠BCD,即∠ACD=∠BCE在△ACD和△BCE中,∴△ACD≌△BCESAS);(2)∵∠ACB=90°,ACBC∴∠CAB=∠CBA=45°,∵△ACD≌△BCEBEAD=5,∠CBE=∠CAD=45°,∴∠ABE=∠ABC+∠CBE=90°,AB=AD+BD=17.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,证明三角形全等是解题的关键. 

    相关试卷

    初中数学第24章 圆综合与测试测试题:

    这是一份初中数学第24章 圆综合与测试测试题,共30页。试卷主要包含了等边三角形等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试当堂达标检测题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂达标检测题,共30页。

    初中数学沪科版九年级下册第24章 圆综合与测试同步训练题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步训练题,共30页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map