


九年级下册第24章 圆综合与测试习题
展开
这是一份九年级下册第24章 圆综合与测试习题,共33页。
沪科版九年级数学下册第24章圆专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,是中心对称图形的是( )A. B.C. D.2、如图,是的直径,弦,垂足为,若,则( )A.5 B.8 C.9 D.103、下列图形中,是中心对称图形也是轴对称图形的是( )A. B. C. D.4、在下列图形中,既是中心对称图形又是轴对称图形的是( )A. B. C. D.5、如图,AB是的直径,弦CD交AB于点P,,,,则CD的长为( )A. B. C. D.86、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )A.1cm B.2cm C.3cm D.4cm7、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )A. B. C. D.8、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于( )A.10 B.6 C.6 D.129、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是( )A. B.1 C.2 D.10、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180°,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是( )A.它们的开口方向相同 B.它们的对称轴相同C.它们的变化情況相同 D.它们的顶点坐标相同第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,、分别与相切于A、B两点,若,则的度数为________.2、如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于_____.3、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______. 4、如图,在平面直角坐标系xOy中,半径为1的半圆O上有一动点B,点,为等腰直角三角形,A为直角顶点,且C在第一象限,则线段OC长度的最大值为______.5、如图,在平行四边形中,,,,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为________.(结果保留)三、解答题(5小题,每小题10分,共计50分)1、在等边中,将线段AB绕点A顺时针旋转得到线段AD.(1)若线段DA的延长线与线段BC相交于点E(不与点B,C重合),写出满足条件的α的取值范围;(2)在(1)的条件下连接BD,交CA的延长线于点F.①依题意补全图形;②用等式表示线段AE,AF,CE之间的数量关系,并证明.2、如图,在中,,,D是边BC上一点,作射线AD,满足,在射线AD取一点E,且.将线段AE绕点A逆时针旋转90°,得到线段AF,连接BE,FE,连接FC并延长交BE于点G.(1)依题意补全图形;(2)求的度数;(3)连接GA,用等式表示线段GA,GB,GC之间的数量关系,并证明.3、如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,半径OD弦BC.(1)求证:弧AD=弧CD;(2)连接AC、BD相交于点F,AC与OD相交于点E,连接CD,若⊙O的半径为5,BC=6,求CD和EF的长.4、如图,已知为的直径,切于点C,交的延长线于点D,且.(1)求的大小;(2)若,求的长.5、(教材呈现)下图是华师版九年级下册数学教材第43页的部分内容.圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.由圆周角定理,可以得到以下推论:推论1 90°的圆周角所对的弦是直径.(如图)(推论证明)已知:△ABC的三个顶点都在⊙O上,且∠ACB=90°. 求证:线段AB是⊙O的直径. 请你结合图①写出推论1的证明过程.(深入探究)如图②,点A,B,C,D均在半径为1的⊙O上,若∠ACB=90°,∠ACD=60°.则线段AD的长为 .(拓展应用)如图③,已知△ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点E是BC的中点,连结DE. 若AB=,则DE的长为 . -参考答案-一、单选题1、C【分析】根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解.【详解】A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意.故选:C.【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合.2、C【分析】连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得【详解】解:如图,连接,∵是的直径,弦,∴设的半径为,则在中,,即解得即故选C【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.3、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;B、是轴对称图形,不是中心对称图形,故B选项不符合题意;C、既是轴对称图形,又是中心对称图形,故C选项符合题意;D、是轴对称图形,但不是中心对称图形,故D选项不符合题意.故选:C.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.4、B【分析】根据中心对称图形与轴对称图形的定义解答即可.【详解】解:A.是轴对称图形,不是中心对称图形,不符合题意;B既是中心对称图形又是轴对称图形,符合题意;C. 是轴对称图形,不是中心对称图形,不符合题意;D. 既不是中心对称图形,也不是轴对称图形,不符合题意.故选B.【点睛】本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.5、A【分析】过点作于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.【详解】解:如图,过点作于点,连接, AB是的直径,,,,在中,故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.6、B【分析】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.【详解】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=8cm,∴BD=AB=4(cm),由题意得:OB=OC==5cm,在Rt△OBD中,OD=(cm),∴CD=OC-OD=5-3=2(cm),即水的最大深度为2cm,故选:B.【点睛】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.7、A【分析】如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.【详解】解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得: 四边形为正方形,则 设 而AB=2,CD=3,EF=5,结合正方形的性质可得:而 又 而 解得: 故选A【点睛】本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.8、D【分析】连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.【详解】解:连接OB,OC,∵∠BAC=30°,∴∠BOC=60°.∵OB=OC,BC=6,∴△OBC是等边三角形,∴OB=BC=6.∴⊙O的直径等于12.故选:D.【点睛】本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.9、A【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【详解】解:如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,MG⊥CH时,MG最短,即HN最短,此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故选A.【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.10、B【分析】根据旋转的性质及抛物线的性质即可确定答案.【详解】抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180°后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,-2),所以在四个选项中,只有B选项符合题意.故选:B【点睛】本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键.二、填空题1、【分析】根据已知条件可得出,,再利用圆周角定理得出即可.【详解】解:、分别与相切于、两点,,,,,.故答案为:.【点睛】本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键.2、2【分析】根据扇形的面积公式S=,代入计算即可.【详解】解:∵“完美扇形”的周长等于6,∴半径r为=2,弧长l为2,这个扇形的面积为:==2.答案为:2.【点睛】本题考查了扇形的面积公式,扇形面积公式与三角形面积公式十分类似,为了便于记忆,只要把扇形看成一个曲边三角形,把弧长l看成底,R看成底边上的高即可.3、6【分析】如图,连接OA、OB、OC、OD、OE、OF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.【详解】解:如图,连接OA、OB、OC、OD、OE、OF.∵正六边形ABCDEF,∴AB=BC=CD=DE=EF=FA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,∵的周长为,∴的半径为,正六边形的边长是6;【点睛】本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.4、1+【分析】过点C作CD⊥x轴于D,过B作BE⊥x轴于E,连结OB,设OD=x,根据点A(3,0)可求AD=x-3,根据为等腰直角三角形,得出AB=AC,∠BAC=90°,再证△BAE≌△ACD(AAS),得出BE=AD=x-3,EA=DC,在Rt△EBO中,根据勾股定理,得出CD=AE=,根据勾股定理CO=,当OD=CD时OC最大,OC=此时解方程即可.【详解】解:过点C作CD⊥x轴于D,过B作BE⊥x轴于E,连结OB,设OD=x,∵点A(3,0)∴AD=x-3,∵为等腰直角三角形,∴AB=AC,∠BAC=90°,∴∠BAE+∠CAD=180°-∠BAC=180°-90°=90°,∵CD⊥x轴, BE⊥x轴,∴∠BEA=∠ADC=90°,∴∠ACD+∠CAD=90°,∴∠ACD=∠BAE,在△BAE和△ACD中,,∴△BAE≌△ACD(AAS),∴BE=AD=x-3,EA=DC,在Rt△EBO中,OB=1,BE= x-3,根据勾股定理,∴EA=OE+OA=,∴CD=AE=,∴CO=,当OD=CD时OC最大,OC=,此时,∴,∴,∴,∴,(舍去),∴线段OC长度的最大值为.故答案为:1+.【点睛】本题考查等腰直角三角形性质,三角形全等判定与性质,勾股定理,掌握等腰直角三角形性质,三角形全等判定与性质,勾股定理是解题关键.5、【分析】过点C作于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可.【详解】解:过点C作于点H,在平行四边形中,平行四边形的面积为:,图中黑色阴影部分的面积为:,故答案为:.【点睛】本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键.三、解答题1、(1);(2)①见解析;②AE=AF+CE,证明见解析.【分析】(1)根据“线段DA的延长线与线段BC相交于点E”可求解;(2)①根据要求画出图形,即可得出结论;②在AE上截取AH=AF,先证△AFD≌△AHC,再证∠CHE=∠HCE,即可得出结果.【详解】(1)如图:AD只能在锐角∠EAF内旋转符合题意故α的取值范围为:;(2)补全图形如下:(3)AE=AF+CE,证明:在AE上截取AH=AF,由旋转可得:AB=AD,∴∠D=∠ABF,∵△ABC为等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴AD=AC,∵∠DAF=∠CAH,∴△AFD≌△AHC,∴∠AFD=∠AHC,∠D=∠ACH,∴∠AFB=∠CHE,∵∠AFB+∠ABF=∠ACH+∠HCE=60°,∴∠CHE+∠D=∠D+∠HCE=60°,∴∠CHE=∠HCE,∴CE=HE,∴AE=AH+HE=AF+CE.【点睛】本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线.2、(1)见解析;(2)(3)【分析】(1)根据题意补全图形即可;(2)根据旋转的性质可得,,进而证明,可得,根据角度的转换可得,进而根据三角形的外角性质即可证明;(3)过点作,证明,进而根据勾股定理以及线段的转换即可得到(1)如图,(2)将线段AE绕点A逆时针旋转90°,得到线段AF,,,又即(3)证明如下,如图,过点作,又,又,即【点睛】本题考查了旋转的性质,三角形全等的性质与判定,勾股定理,等腰三角形的性质,掌握旋转的性质是解题的关键.3、(1)见解析;(2)CD=,EF=1.【分析】(1)连接OC,根据圆的性质,得到OB=OC;根据等腰三角形的性质,得到;根据平行线的性质,得到;在同圆和等圆中,根据相等的圆心解所对的弧等即得证.(2)根据直径所对的圆周角是直角求出∠ACB=90°,根据平行线的性质求得∠AEO=∠ACB=90°,利用勾股定理求出AC=8,根据垂径定理求得EC=AE=4,根据中位线定理求出OE,在Rt△CDE中,根据勾股定理求出CD,因为,所以△EDF∽△BCF,最后根据似的性质,列方程求解即可.【详解】(1)解:连结OC.∵∴∠1=∠B∠2=∠C∵OB =OC∴∠B=∠C∴∠1=∠2∴弧AD=弧CD(2)∵AB是的直径∴∠ACB=90°∵∴∠AEO=∠ACB=90°Rt△ABC中,∠ACB=90°,∵BC=6,AB=10 ∴AC=8∵半径OD⊥AC于E ∴EC=AE=4 OE=∴ED=2 由勾股定理得,CD=∵∴△EDF∽△CBF∴设EF=x,则FC=4-x∴EF=1,经检验符合题意.【点睛】本题考查了圆的综合题,圆的有关性质:圆的半径相等;同圆或等圆中,相等的圆心角所对的弧等;直径所对的圆周角是直角;垂径定理;平行线的性质,勾股定理,三角形中位线定理,三角形相似的判定和性质等知识,正确理解圆的相关性质是解题的关键.4、(1)45°(2)【分析】(1)连接OC,根据切线的性质得到OC⊥CD,根据圆周角定理得到∠DOC=2∠CAD,进而证明∠D=∠DOC,根据等腰直角三角形的性质求出∠D的度数;(2)根据等腰三角形的性质求出OC,根据弧长公式计算即可.(1)连接.∵ ,∴ ,即 .∵ ,∴ .∵ 是⊙的切线,∴ ,即 .∴ . ∴ .∴ .(2)∵ ,,∴ .∵ ,∴ .∴ 的长.【点睛】本题考查的是切线的性质、圆周角定理、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.5、【推论证明】见解析;【深入探究】;【拓展应用】.【分析】推论证明:根据圆周角定理求出,即可证明出线段AB是⊙O的直径;深入探究:连接AB,首先根据∠ACB=90°得出AB是⊙O的直径,然后求出,然后根据同弧所对的圆周角相等得到,然后根据30°角直角三角形的性质求出BD的长度,最后根据勾股定理即可求出AD的长度;拓展应用:连接AE,作CF⊥DE交DE于点F,首先根据等边三角形三线合一的性质求出,然后证明出A,E,C,D四点共圆,然后根据同弧或等弧所对的圆周角相等求出,,最后根据等腰直角三角形的性质和30°角直角三角形的性质,结合勾股定理求解即可.【详解】解:推论证明:∵∴,∴A,B,O三点共线,又∵点O是圆心,∴AB是⊙O的直径;深入探究:如图所示,连接AB,∵∠ACB=90°∴AB是⊙O的直径∴∵∠ACD=60°∴∵∴∴在中,∴;拓展应用:如图所示,连接AE,作CF⊥DE交DE于点F,∵△ABC是等边三角形,点E是BC的中点∴,又∵以AC为底边在三角形ABC外作等腰直角三角形ACD∴,∴点A,E,C,D四点都在以AC为直径的圆上,∵∴∵CF⊥DE∴是等腰直角三角形∴,∴∵∴,解得:∴∵∴∴在中,∴∴.【点睛】此题考查了圆周角定理,90°的圆周角所对的弦是直径,相等的圆周角所对的弧相等,等边三角形和等腰直角三角形的性质等知识,解题的关键是熟练掌握以上知识点和性质定理.
相关试卷
这是一份沪科版九年级下册第24章 圆综合与测试练习题,共29页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试练习,共36页。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步训练题,共33页。