搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练沪科版九年级数学下册第24章圆专题攻克试题

    2022年最新强化训练沪科版九年级数学下册第24章圆专题攻克试题第1页
    2022年最新强化训练沪科版九年级数学下册第24章圆专题攻克试题第2页
    2022年最新强化训练沪科版九年级数学下册第24章圆专题攻克试题第3页
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试课后练习题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试课后练习题,共34页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆专题攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )

    A.36 cm B.27 cm C.24 cm D.15 cm
    2、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是( )
    A.2个 B.3个 C.4个 D.5个
    3、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点、、为顶点的三角形的面积是,则下列图像能大致反映与的函数关系的是( )

    A. B.
    C. D.
    4、计算半径为1,圆心角为的扇形面积为( )
    A. B. C. D.
    5、下列四个图案中,是中心对称图形的是(  )
    A. B.
    C. D.
    6、如图,AB,BC,CD分别与⊙O相切于E、F、G三点,且ABCD,BO=3,CO=4,则OF的长为(  )

    A.5 B. C. D.
    7、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )

    A. B. C. D.
    8、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为( )

    A.30° B.60°
    C.90° D.120°
    9、已知⊙O的半径为4,,则点A在( )
    A.⊙O内 B.⊙O上 C.⊙O外 D.无法确定
    10、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )

    A.3 B.4 C.5 D.6
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知O、I分别是△ABC的外心和内心,∠BIC=125°,则∠BOC的大小是 ___度.
    2、如图,半圆O中,直径AB=30,弦CD∥AB,长为6π,则由与AC,AD围成的阴影部分面积为_______.

    3、如图,正方形ABCD的边长为1,⊙O经过点C,CM为⊙O的直径,且CM=1.过点M作⊙O的切线分别交边AB,AD于点G,H.BD与CG,CH分别交于点E,F,⊙O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部).给出下列四个结论:
    ①HD=2BG;②∠GCH=45°;③H,F,E,G四点在同一个圆上;④四边形CGAH面积的最大值为2.其中正确的结论有 _____(填写所有正确结论的序号).

    4、一个五边形共有__________条对角线.
    5、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,已知AB是⊙O的直径,,连接OC,弦,直线CD交BA的延长线于点.

    (1)求证:直线CD是⊙O的切线;
    (2)若,,求OC的长.
    2、已知:如图,正方形的边长为1,在射线AB上取一点E,联结DE,将ADE绕点D针旋转90°,E点落在点F处,联结EF,与对角线BD所在的直线交于点M,与射线DC交于点N.求证:

    (1)当时,求的值;
    (2)当点E在线段AB上,如果,,求y关于x的函数解析式,并写出定义域;
    (3)联结AM,直线AM与直线BC交于点G,当时,求AE的值.
    3、如图,为的直径,为的切线,弦,直线交的延长线于点,连接.

    求证:(1);
    (2).
    4、如图 1,O为直线 DE上一点,过点 O在直线 DE上方作射线 OC,∠EOC=130°.将直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条边 OA在射线 OD上,另一边 OB在直线 DE上方,将直角三角板绕点 O 按每秒 5°的速度逆时针旋转一周,设旋转时间为t 秒.

    (1)如图2,当t=4 时,∠AOC= ,∠BOE= ,∠BOE﹣∠AOC= ;
    (2)当三角板旋转至边 AB与射线 OE相交时(如图 3),试猜想∠AOC与∠BOE的数量关系,并说明理由;
    (3)在旋转过程中,是否存在某个时刻,使得射线 OA、OC、OD 中的某一条射线是另两条射线所成夹角的角平分线?若存在,请直接写出 t 的取值,若不存在,请说明理由.
    5、如图,正方形ABCD是半径为R的⊙O内接四边形,R=6,求正方形ABCD的边长和边心距.


    -参考答案-
    一、单选题
    1、C
    【分析】
    连接,过点作于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可.
    【详解】
    解:连接,过点作于点,交于点,如图所示:

    则,
    的直径为,

    在中,,

    即水的最大深度为,
    故选:C.
    【点睛】
    本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    2、A
    【分析】
    根据轴对称图形与中心对称图形的概念进行判断.
    【详解】
    解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;
    等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;
    共2个既是轴对称图形又是中心对称图形.
    故选:A.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
    3、A
    【分析】
    设正六边形的边长为1,当在上时,过作于 而 求解此时的函数解析式,当在上时,延长交于点 过作于 并求解此时的函数解析式,当在上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,从而可得答案.
    【详解】
    解:设正六边形的边长为1,当在上时,
    过作于 而




    当在上时,延长交于点 过作于

    同理:
    则为等边三角形,



    当在上时,连接

    由正六边形的性质可得:

    由正六边形的对称性可得: 而


    由正六边形的对称性可得:在上的图象与在上的图象是对称的,
    在上的图象与在上的图象是对称的,
    所以符合题意的是A,
    故选A
    【点睛】
    本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.
    4、B
    【分析】
    直接根据扇形的面积公式计算即可.
    【详解】

    故选:B.
    【点睛】
    本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.
    5、A
    【分析】
    中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.
    【详解】
    解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,
    故选:A.
    【点睛】
    本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.
    6、D
    【分析】
    连接OF,OE,OG,根据切线的性质及角平分线的判定可得OB平分,OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.
    【详解】
    解:连接OF,OE,OG,

    ∵AB、BC、CD分别与相切,
    ∴,,,且,
    ∴OB平分,OC平分,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,

    ∴SΔOBC=12OB·OC=12BC·OF,
    ∴,
    故选:D.
    【点睛】
    题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.
    7、A
    【分析】
    如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.
    【详解】
    解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点,
    记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:

    四边形为正方形,则

    设 而AB=2,CD=3,EF=5,结合正方形的性质可得:




    又 而


    解得:

    故选A
    【点睛】
    本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.
    8、B
    【分析】
    由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.
    【详解】
    解:因为每次旋转相同角度,旋转了六次,
    且旋转了六次刚好旋转了一周为360°,
    所以每次旋转相同角度 .
    故选:B.
    【点睛】
    本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.
    9、C
    【分析】
    根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.
    【详解】
    解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,
    ∴d>r,
    ∴点A在⊙O外,
    故选:C.
    【点睛】
    本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.
    10、A
    【分析】
    先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.
    【详解】
    由旋转的性质得:,

    是等边三角形,



    故选:A.
    【点睛】
    本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.
    二、填空题
    1、140
    【分析】
    作的外接圆,根据三角形内心的性质可得:,,再由三角形内角和定理得出:,最后根据三角形外心的性质及圆周角定理即可得.
    【详解】
    解:如图所示,作的外接圆,

    ∵点I是的内心,
    ∴BI,CI分别平分和,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵点O是的外心,
    ∴,
    故答案为:140.
    【点睛】
    题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键.
    2、45
    【分析】
    连接OC,OD,根据同底等高可知S△ACD=S△OCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解.
    【详解】
    解:连接OC,OD,

    ∵直径AB=30,
    ∴OC=OD=,
    ∴CD∥AB,
    ∴S△ACD=S△OCD,
    ∵长为6π,
    ∴阴影部分的面积为S阴影=S扇形OCD=,
    故答案为:45π.
    【点睛】
    本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.
    3、②③④
    【分析】
    根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明∠GHF+∠GEF=180°,取GH的中点P,连接PA,则PA+PC≥AC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可.
    【详解】
    ∵GH是⊙O的切线,M为切点,且CM是⊙O的直径,
    ∴∠CMH=90°,
    ∵四边形ABCD是正方形,
    ∴∠CMH=∠CDH=90°,
    ∵CM=CD,CH=CH,
    ∴△CMH≌△CDH,
    ∴HD=HM,∠HCM=∠HCD,
    同理可证,∴GM=GB,∠GCB=∠GCM,
    ∴GB+DH=GH,无法确定HD=2BG,
    故①错误;
    ∵∠HCM+∠HCD+∠GCB+∠GCM=90°,
    ∴2∠HCM+2∠GCM=90°,
    ∴∠HCM+∠GCM=45°,
    即∠GCH=45°,
    故②正确;

    ∵△CMH≌△CDH,BD是正方形的对角线,
    ∴∠GHF=∠DHF,∠GCH=∠HDF=45°,
    ∴∠GHF+∠GEF=∠DHF +∠GCH+∠EFC
    =∠DHF +∠HDF+∠HFD
    =180°,
    根据对角互补的四边形内接于圆,
    ∴H,F,E,G四点在同一个圆上,
    故③正确;
    ∵正方形ABCD的边长为1,

    =1
    =,∠GAH=90°,AC=
    取GH的中点P,连接PA,
    ∴GH=2PA,
    ∴=,
    ∴当PA取最小值时,有最大值,
    连接PC,AC,
    则PA+PC≥AC,
    ∴PA≥AC- PC,
    ∴当PC最大时,PA最小,
    ∵直径是圆中最大的弦,
    ∴PC=1时,PA最小,
    ∴当A,P,C三点共线时,且PC最大时,PA最小,
    ∴PA=-1,
    ∴最大值为:1-(-1)=2-,
    ∴四边形CGAH面积的最大值为2,
    ∴④正确;
    故答案为: ②③④.
    【点睛】
    本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键.
    4、5
    【分析】
    由n边形的对角线有: 条,再把代入计算即可得.
    【详解】
    解:边形共有条对角线,
    五边形共有条对角线.
    故答案为:5
    【点睛】
    本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键.
    5、60
    【分析】
    正六边形连接各个顶点和中心,这些连线会将360°分成6分,每份60°因此至少旋转60°,正六边形就能与自身重合.
    【详解】
    360°÷6=60°
    故答案为:60
    【点睛】
    本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键.
    三、解答题
    1、(1)见解析;(2)
    【分析】
    (1)连接OD,由AD∥OC及OD=OA,即可得到∠COB=∠DOC,从而可证得△OBC≌△ODC,即可证得CD是⊙O的切线;
    (2)由AD∥OC可得△EAD∽△EOC,可得,再由△OBC≌△ODC得BC=CD,
    从而可得,则可求得OC的长.
    【详解】
    (1)连接OD,
    ∵,
    ∴.
    又∵,
    ∴,
    ∴.
    在与中,
    ∴,
    ∴.
    又∵,
    ∴,
    ∴是的切线.
    (2)∵,
    ∴,
    ∴,
    ∴.
    又∵,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴OC=15

    【点睛】
    本题是圆的综合,它考查了切线的判定,三角形全等的判定与性质,相似三角形的判定与性质等知识;证明圆的切线时,往往作半径.
    2、
    (1);
    (2),0≤x≤1;
    (3)AE的值为或.
    【分析】
    (1)过点E作EH⊥BD与H,根据正方形的边长为1,,求出EB=1-,根据正方形性质可求∠ABD=45°,根据EH⊥BD,得出∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,求出EH=BH=BEsin45=,以及 DH=DB-BH=,利用三角函数定义求解即可;
    (2)解:根据AE=x,求出BE=1-x,根据旋转将△ADE绕点D针旋转90°,得到△DCF,CF=AE=x,根据勾股定理ED=FD=,EF=,可证△DEF为等腰直角三角形,先证△BEM∽△FDM,得出,再证△EMD∽△BMF,得出,两式相乘得出,整理即可;
    (3)当点G在BC上,,先证△BGM∽△DAM,得出,由(2)知△BEM∽△FDM,得出,得出,结合,消去y, 当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,证明△BGM∽△DAM,得出,根据∠LBM=∠CBD=45°,ML⊥BC,证出△MLB为等腰直角三角形,再证△MLB∽△DCB,,CD=1,ML=,ML∥BE,结合△LMF∽△BEF,得出即解方程即可.
    (1)
    解:过点E作EH⊥BD与H,
    ∵正方形的边长为1,,
    ∴EB=1-,
    ∵BD为正方形对角线,
    ∴BD平分∠ABC,
    ∴∠ABD=45°,
    ∵EH⊥BD,
    ∴∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,
    ∴EH=BH,
    ∴EH=BH=BEsin45=,AB=BDcos45°,
    ∴,
    ∴DH=DB-BH=,

    (2)
    解:如上图,∵AE=x,
    ∴BE=1-x,
    ∵将△ADE绕点D针旋转90°,得到△DCF,
    ∴CF=AE=x,ED=FD=,
    ∴BF=BC+CF=1+x,
    在Rt△EBF中EF=,
    ∵∠EDF=90°,ED=FD,
    ∴△DEF为等腰直角三角形,
    ∴∠DFE=∠DEF=45°,
    ∴∠EBM=∠MFD=45°,
    ∵∠EMB=∠DMF,
    ∴△BEM∽△FDM,
    ∴,即,
    ∵∠DEM=∠FBM=45°,∠EMD=∠BMF,
    ∴△EMD∽△BMF,
    ∴,即,
    ∴,
    ∴,
    ∴即,
    ∴,0≤x≤1;
    (3)
    解:当点G在BC上,,
    ∵四边形ABCD为正方形,
    ∴AD∥BG,
    ∴∠DAM=∠BGM,∠ADM=∠GBM,
    ∴△BGM∽△DAM,
    ∴,
    ∵由(2)知△BEM∽△FDM,
    ∴,
    ∵DB=,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴即,
    解,舍去;

    当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,
    ∵GB∥AD,
    ∴∴∠DAM=∠BGM,∠ADM=∠GBM,
    ∴△BGM∽△DAM,
    ∴,
    ∴,
    ∴,
    ∵∠LBM=∠CBD=45°,ML⊥BC,
    ∴△MLB为等腰直角三角形,
    ∵ML∥CD,
    ∴∠LMB=∠CDB,∠L=∠DCB,
    ∴△MLB∽△DCB,
    ∴,CD=1,
    ∴ML=
    ∵ML∥BE,
    ∴∠L=∠FBE,∠LMF=∠BEF,
    ∴△LMF∽△BEF,
    ∴,
    ∵BE=AE-AB=x-1,LF=LB+BC+CF=,BF=BC+CF=1+x,
    ∴,
    整理得:,
    解得,舍去,

    ∴AE的值为或.
    【点睛】
    本题考查正方形性质,图形旋转先证,等腰直角三角形判定与性质,锐角三角函数定义,三角形相似判定与性质,勾股定理,解一元二次方程,函数关系式,本题难度大,利用辅助线狗仔三角形相似是解题关键.
    3、(1)见解析;(2)见解析
    【分析】
    (1)连接,根据,可证.从而可得,,即可证明,故;
    (2)证明,可得,即可证明.
    【详解】
    证明:(1)连接,如图:

    ∵为的直径,为的切线,
    ∴,
    ∵,
    ∴,.
    ∵,
    ∴,
    ∴.
    在和中,

    ∴,
    ∴,
    ∵为的直径,
    ∴,即,
    ∴,
    ∵,
    ∴,
    ∴,即,
    ∵,
    ∴;
    (2)由(1)知:,
    又∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴.
    【点睛】
    本题考查圆中的相似三角形判定与性质,涉及三角形全等的判定与性质,解题的关键是证明,从而得到.
    4、
    (1)30°,70°,40°;
    (2)∠AOC-∠BOE=40°,理由见解析;
    (3)t 的取值为5或20或62
    【分析】
    (1)先根据已知求出∠DOC、∠BOC,再求出当t=4时的旋转角的度数,再利用角的和与差求解即可;
    (2)设旋转角为x,用x表示∠AOC和∠BOE,即可得出结论;
    (3)分①OA为∠DOC的平分线;②OC为∠DOA的平分线;③OD为∠COA的平分线三种情况,利用角平分线定义和旋转性质求出旋转角即可.
    (1)
    解:∵∠EOC=130°,∠AOB=∠BOE=90°,
    ∴∠DOC=180°-130°=50°,∠BOC=130°-90°=40°,
    当t=4时,旋转角4×5°=20°,
    ∴∠AOC=∠DOC-∠DOA=50°-20°=30°,∠BOE=90°-20°=70°,
    ∠BOE-∠AOC=70°-30°=40°,
    故答案为:30°,70°,40°;
    (2)
    解:∠AOC-∠BOE=40°,理由为:
    设旋转角为x,当三角板旋转至边 AB与射线 OE相交时,
    ∠AOC=x-50°,∠BOE=x-90°,
    ∴∠AOC-∠BOE=(x-50°)-(x-90°)=40°;
    (3)
    解:存在,
    ①当OA为∠DOC的平分线时,旋转角5t =∠DOC=25,
    ∴t=5;
    ②当OC为∠DOA的平分线时,旋转角5t =2∠DOC=100,
    ∴t=20;
    ③当OD为∠COA的平分线时,360-5t=∠DOC=50,
    ∴t=62,
    综上,满足条件的t 的取值为5或20或62.
    【点睛】
    本题考查角平分线的定义、旋转的性质、角的运算,熟练掌握旋转性质,利用分类讨论思想求解是解答的关键.
    5、边长为,边心距为
    【分析】
    过点O作OE⊥BC,垂足为E,利用圆内接四边形的性质求出∠BOC=90°,∠OBC=45°,然后在Rt△OBE中,根据勾股定理求出OE、BE即可.
    【详解】
    解:过点O作OE⊥BC,垂足为E,

    ∵正方形ABCD是半径为R的⊙O内接四边形,R=6,
    ∴∠BOC==90°,∠OBC=45°,OB=OC=6,
    ∴BE=OE.
    在Rt△OBE中,∠BEO=90°,由勾股定理可得
    ∵OE2+BE2=OB2,
    ∴OE2+BE2=36,
    ∴OE= BE=,
    ∴BC=2BE=,
    即半径为6的圆内接正方形ABCD的边长为,边心距为.
    【点睛】
    本题考查了圆内接四边形的性质,以及勾股定理,正多边形各边所对的外接圆的圆心角都相等,正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角,正n边形每个中心角都等于.

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试课后作业题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后作业题,共32页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。

    初中数学第24章 圆综合与测试测试题:

    这是一份初中数学第24章 圆综合与测试测试题,共33页。

    初中数学沪科版九年级下册第24章 圆综合与测试练习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试练习题,共30页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map