![2022年最新强化训练沪科版九年级数学下册第24章圆专题测试试题(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12686255/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练沪科版九年级数学下册第24章圆专题测试试题(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12686255/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练沪科版九年级数学下册第24章圆专题测试试题(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12686255/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪科版九年级下册第24章 圆综合与测试一课一练
展开
这是一份初中数学沪科版九年级下册第24章 圆综合与测试一课一练,共27页。试卷主要包含了下列判断正确的个数有,已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2、下列叙述正确的有( )个.(1)随着的增大而增大;(2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;(3)斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;(4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;(5)以为三边长度的三角形,不是直角三角形.A.0 B.1 C.2 D.33、下列各点中,关于原点对称的两个点是( )A.(﹣5,0)与(0,5) B.(0,2)与(2,0)C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)4、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为( )A.45° B.60° C.90° D.120°5、下列图形中,既是中心对称图形又是抽对称图形的是( )A. B. C. D.6、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是( )A. B.C.或 D.(﹣2,0)或(﹣5,0)7、下列判断正确的个数有( )①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④弧分优弧和劣弧;⑤同一条弦所对的两条弧一定是等弧.A.1个 B.2个 C.3个 D.4个8、图2是由图1经过某一种图形的运动得到的,这种图形的运动是( )A.平移 B.翻折 C.旋转 D.以上三种都不对9、已知⊙O的半径为4,,则点A在( )A.⊙O内 B.⊙O上 C.⊙O外 D.无法确定10、下列图形中,是中心对称图形也是轴对称图形的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、到点的距离等于8厘米的点的轨迹是__.2、如图,在平面直角坐标系xOy中,半径为1的半圆O上有一动点B,点,为等腰直角三角形,A为直角顶点,且C在第一象限,则线段OC长度的最大值为______.3、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是________4、如图,PA,PB分别切⊙O于点A,B,Q是优弧上一点,若∠P=40°,则∠Q的度数是________.5、如图,在平行四边形中,,,,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为________.(结果保留)三、解答题(5小题,每小题10分,共计50分)1、如图,A,P,B,C是⊙O上的四点,∠APC=∠CPB=60°.(1)判断△ABC的形状,并证明你的结论;(2)求证:PA+PB=PC.2、如图,⊙O的半径为10cm,弦AB垂直平分半径OC,垂足为点D.(1)弦AB的长为 .(2)求劣弧的长.3、如图,在中,,O为AC上一点,以点O为圆心,OC为半径的圆恰好与AB相切,切点为D,与AC的另一个交点为E.(1)求证:BO平分;(2)若,,求BO的长.4、如图①,在Rt△ABC中,∠BAC = 90°,AB = k·AC,△ADE是由△ABC绕点A逆时针旋转某个角度得到的,BC与DE交于点F,直线BD与EC交于点G(1)求证:BD = k·EC;(2)求∠CGD的度数;(3)若k = 1(如图②),求证:A,F,G三点在同一直线上.5、新定义:如图①,已知,在内部画射线OC,得到三个角,分别为、、.若这三个角中有一个角是另外一个角的2倍,则称射线OC为的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)(阅读理解)(1)角的平分线______这个角的“幸运线”;(填“是”或“不是”)(初步应用)(2)如图①,,射线OC为的“幸运线”,则的度数为______;(直接写出答案)(解决问题)(3)如图②,已知,射线OM从OA出发,以每秒10°的速度绕O点顺时针旋转,同时,射线ON从OB出发,以每秒15°的速度绕O点顺时针旋转,设运动的时间为t秒.若OM、ON、OB三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求运动的时间t的值.(实际运用)(4)周末,小丽帮妈妈到附近的“中通快递”网点取包裹,出家门时小丽看了看时钟,恰好是下午3点整,取好包裹回到家时,小丽再看了看时钟,还没有到下午3点半,但此时分针与时针恰好重合.问小丽帮妈妈取包裹用了多少分钟? -参考答案-一、单选题1、B【详解】解:A.是轴对称图形,不是中心对称图形,故不符合题意;B.既是轴对称图形,又是中心对称图形,故符合题意;C.不是轴对称图形,是中心对称图形,故不符合题意;D.是轴对称图形,不是中心对称图形,故不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、D【分析】根据反比例函数的性质,得当或者时,随着的增大而增大;根据直径所对圆周角为直角的性质,得斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解.【详解】当或者时,随着的增大而增大,故(1)不正确;如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;,故(2)正确;∵圆的直径所对的圆周角为直角∴斜边为的直角三角形顶点A的轨迹是以中点为圆心,长为直径的圆,故(3)正确;三角形三边的垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确;∵∴∴以为三边长度的三角形,是直角三角形,故(5)错误;故选:D.【点睛】本题考查了三角形、垂直平分线、反比例函数、圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解.3、D【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;故选:D.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.4、B【分析】设∠ADC=α,∠ABC=β,由菱形的性质与圆周角定理可得 ,求出β即可解决问题.【详解】解:设∠ADC=α,∠ABC=β; ∵四边形ABCO是菱形, ∴∠ABC=∠AOC; ∠ADC=β; 四边形为圆的内接四边形,α+β=180°, ∴ , 解得:β=120°,α=60°,则∠ADC=60°, 故选:B.【点睛】该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.5、B【详解】解:.是轴对称图形,不是中心对称图形,故此选项不符合题意;.既是轴对称图形,也是中心对称图形,故此选项符合题意;.是轴对称图形,不是中心对称图形,故此选项不符合题意;.不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:B.【点睛】本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、C【分析】由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.【详解】解:∵直线交x轴于点A,交y轴于点B,∴令x=0,得y=-3,令y=0,得x=-4,∴A(-4,0),B(0,-3),∴OA=4,OB=3,∴AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,∵∠ADP=∠AOB=90°,∠PAD=∠BAO,∴△APD∽△ABO,∴,∴,∴AP= ,∴OP= 或OP= ,∴P或P,故选:C.【点睛】本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.7、B【详解】①直径是圆中最大的弦;故①正确,②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确③半径相等的两个圆是等圆;故③正确④弧分优弧、劣弧和半圆,故④不正确⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.综上所述,正确的有①③故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.8、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C.【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.9、C【分析】根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.【详解】解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,∴d>r,∴点A在⊙O外,故选:C.【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.10、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;B、是轴对称图形,不是中心对称图形,故B选项不符合题意;C、既是轴对称图形,又是中心对称图形,故C选项符合题意;D、是轴对称图形,但不是中心对称图形,故D选项不符合题意.故选:C.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.二、填空题1、以点为圆心,8厘米长为半径的圆【分析】由题意直接根据圆的定义进行分析即可解答.【详解】到点的距离等于8厘米的点的轨迹是:以点为圆心,2厘米长为半径的圆.故答案为:以点为圆心,8厘米长为半径的圆.【点睛】本题主要考查了圆的定义,正确理解定义是关键,注意掌握圆的定义是在同一平面内到定点的距离等于定长的点的集合.2、1+【分析】过点C作CD⊥x轴于D,过B作BE⊥x轴于E,连结OB,设OD=x,根据点A(3,0)可求AD=x-3,根据为等腰直角三角形,得出AB=AC,∠BAC=90°,再证△BAE≌△ACD(AAS),得出BE=AD=x-3,EA=DC,在Rt△EBO中,根据勾股定理,得出CD=AE=,根据勾股定理CO=,当OD=CD时OC最大,OC=此时解方程即可.【详解】解:过点C作CD⊥x轴于D,过B作BE⊥x轴于E,连结OB,设OD=x,∵点A(3,0)∴AD=x-3,∵为等腰直角三角形,∴AB=AC,∠BAC=90°,∴∠BAE+∠CAD=180°-∠BAC=180°-90°=90°,∵CD⊥x轴, BE⊥x轴,∴∠BEA=∠ADC=90°,∴∠ACD+∠CAD=90°,∴∠ACD=∠BAE,在△BAE和△ACD中,,∴△BAE≌△ACD(AAS),∴BE=AD=x-3,EA=DC,在Rt△EBO中,OB=1,BE= x-3,根据勾股定理,∴EA=OE+OA=,∴CD=AE=,∴CO=,当OD=CD时OC最大,OC=,此时,∴,∴,∴,∴,(舍去),∴线段OC长度的最大值为.故答案为:1+.【点睛】本题考查等腰直角三角形性质,三角形全等判定与性质,勾股定理,掌握等腰直角三角形性质,三角形全等判定与性质,勾股定理是解题关键.3、【分析】由勾股定理求得圆锥母线长为,再由圆锥的侧面积公式即可得出圆锥侧面积为.【详解】∵是一个圆锥在某平面上的正投影∴为等腰三角形∵AD⊥BC∴在中有即由圆锥侧面积公式有.故答案为:。【点睛】本题考查了计算圆锥的侧面积,若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为,圆锥的侧面积为.4、70°度【分析】连接OA、OB,根据切线性质可得∠OAP=∠OBP=90°,再根据四边形的内角和为360°求得∠AOB,然后利用圆周角定理求解即可.【详解】解:连接OA、OB,∵PA,PB分别切⊙O于点A,B,∴∠OAP=∠OBP=90°,又∠P=40°,∴∠AOB=360°-90°-90°-40°=140°,∴∠Q=∠AOB=70°,故答案为:70°.【点睛】本题考查切线性质、四边形内角和为360°、圆周角定理,熟练掌握切线性质和圆周角定理是解答的关键.5、【分析】过点C作于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可.【详解】解:过点C作于点H,在平行四边形中,平行四边形的面积为:,图中黑色阴影部分的面积为:,故答案为:.【点睛】本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键.三、解答题1、(1)△ABC是等边三角形,证明见解析;(2)见解析【分析】(1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;(2)如图所示,在PC取一点E使得AE=AP,先证明△APE是等边三角形,得到AP=PE,∠AEP=60°,可以推出∠AEC=∠APB,然后证明△APB≌△AEC得到BP=CE,即可证明PC=PE+CE=AP+BP.【详解】解:(1)△ABC是等边三角形.证明如下:由圆周角定理:∠BAC=∠CPB,∠ABC=∠APC∵∠APC=∠CPB=60°,∴∠BAC=∠ABC=60°,∴∠ACB=180°-∠BAC-∠ABC=180°-60°-60°=60°.∴△ABC是等边三角形.(2)如图所示,在PC取一点E使得AE=AP,∵∠APE=60°,AP=AE,∴△APE是等边三角形,∴AP=PE,∠AEP=60°,∴∠AEC=120°,又∵∠APC=∠CPB=60°,∴∠APB=120°,∴∠AEC=∠APB,∵△ABC是等边三角形,∴AB=AC,又∵∠ABP=∠ACE,∴△APB≌△AEC(AAS),∴BP=CE,∴PC=PE+CE=AP+BP.【点睛】本题考查了圆周角定理、等边三角形的性质与判定,全等三角形的性质与判定,解题的关键是掌握圆周角定理,正确求出∠ABC=∠BAC=60°.2、(1),(2).【分析】(1)根据弦AB垂直平分半径OC,OC=OB=10cm,得出OD=CD=,∠ODB=90°,根据勾股定理,可求AB=2BD=2×;(2)根据锐角三角函数定义求出cos∠DOB=,得出∠DOB=60°,利用弧长公式求出即可.【详解】解:(1)∵弦AB垂直平分半径OC,OC=OB=10cm,∴OD=CD=,∠ODB=90°,∴,∴AB=2BD=2×,故答案为;(2)cos∠DOB=,∴∠DOB=60°,∴的度数为2×60°=120°,∴.【点睛】本题考查垂直平分线性质,勾股定理,锐角三角函数,弧长,掌握垂直平分线性质,勾股定理,锐角三角函数,弧长是解题关键.3、(1)见解析;(2)2【分析】(1)连接OD,由与AB相切得,由HL定理证明由全等三角形的性质得,即可得证;(2)设的半径为,则,在中,得出关系式求出,可得出的长,在中,由正切值求出,在中,由勾股定理求出即可.【详解】(1)如图,连接OD,∵与AB相切,∴,在与中,,∴,∴,∴平分;(2)设的半径为,则,在中,,,∴,解得:,∴,在中,,即,在中,.【点睛】本题考查圆与直线的位置关系,全等三角形的判定与性质、三角函数以及勾股定理,掌握相关知识点的应用是解题的关键.4、(1)见解析;(2)90°;(3)见解析【分析】(1)由旋转的性质可得对应边相等对应角相等,由相似三角形的判定得出△ABD∽△ACE,由相似三角形的性质即可得出结论 ;(2)由(1)证得△ABD∽△ACE,和等腰三角形的性质得出,进而推出,由四边形的内角和定理得出结论;(3)连接CD,由旋转的性质和等腰三角形的性质得出,CG=DG,FC=FD,由垂直平分线的判断得出A,F,G都在CD的垂直平分线上,进而得出结论.【详解】证明:(1)∵△ADE是由△ABC绕点A逆时针旋转某个角度得到的,∴AB=AD,AC=AE,∠BAD=∠CAE,∴,∴△ABD∽△ACE,∴,∵AB = k·AC,∴,∴BD = k·EC;(2)由(1)证得△ABD∽△ACE,∴,∵AB=AD,AC=AE,∠BAC = 90°,∴,∴,∵,∴,∴∴在四边形ADGE中,,∠BAC = 90°,∴∠CGD=360°-180°-90°=90°;(3)连接CD,如图:∵△ADE是由△ABC绕点A逆时针旋转某个角度得到的,∠BAC = 90°,AB = k·AC,∴当k = 1时,△ABC和△ADE为等腰直角三角形,∴,∴,∴,∴CG=DG∵,∴,∴FC=FD,∴点A、点G和点F在CD的垂直平分线上, ∴A,F,G三点在同一直线上.【点睛】本题考查了相似三角形的性质和判定,旋转的性质,等腰直角三角形的性质和判定,垂直平分线的判定等知识点,熟练掌握相似三角形的判定和垂直平分线的判定是解题的关键.5、(1)是;(2)16°或24°或32°;(3)2或或;(4).【分析】(1)根据幸运线定义即可求解;(2)分3种情况,根据幸运线定义得到方程求解即可;(3)根据幸运线定义得到方程求解即可;(4)利用时针1分钟走,分针1分钟走,可解答问题.【详解】解:(1)一个角的平分线是这个角的“幸运线”;故答案为:是;(2)①设∠AOC=x,则∠BOC=2x,由题意得,x+2x=48°,解得x=16°,②设∠AOC=x,则∠BOC=x,由题意得,x+x=48°,解得x=24°,③设∠AOC=x,则∠BOC=x,由题意得,x+x=48°,解得x=32°,故答案为:16°或24°或32°;(3)OB是射线OM与ON的幸运线,则∠BOM=∠MON,即50-10t=(50-10t+15t),解得t=2;∠BOM=∠MON,即50-10t=(50-10t+15t),解得t=;∠BOM=∠MON,即50-10t=(50-10t+15t),解得t=;故t的值是2或或;(4)时针1分钟走,分针1分钟走,设小丽帮妈妈取包裹用了x分钟,则有0.5x+3×30=6x,解得:x=.【点睛】本题考查了旋转的性质,幸运线定义,学生的阅读理解能力及知识的迁移能力.理解“幸运线”的定义是解题的关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后作业题,共32页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。
这是一份沪科版九年级下册第24章 圆综合与测试课后作业题,共28页。试卷主要包含了下列判断正确的个数有等内容,欢迎下载使用。
这是一份初中数学第24章 圆综合与测试课时练习,共37页。试卷主要包含了将一把直尺等内容,欢迎下载使用。