开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年强化训练沪科版九年级数学下册第24章圆综合测评练习题(含详解)

    2022年强化训练沪科版九年级数学下册第24章圆综合测评练习题(含详解)第1页
    2022年强化训练沪科版九年级数学下册第24章圆综合测评练习题(含详解)第2页
    2022年强化训练沪科版九年级数学下册第24章圆综合测评练习题(含详解)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试课后作业题

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后作业题,共32页。试卷主要包含了下列语句判断正确的是,将一把直尺等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,四边形内接于,如果它的一个外角,那么的度数为( )
    A.B.C.D.
    2、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )
    A.50°B.70°C.110°D.120°
    3、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是( )
    A.B.1C.2D.
    4、下列语句判断正确的是( )
    A.等边三角形是轴对称图形,但不是中心对称图形
    B.等边三角形既是轴对称图形,又是中心对称图形
    C.等边三角形是中心对称图形,但不是轴对称图形
    D.等边三角形既不是轴对称图形,也不是中心对称图形
    5、如图,在中,,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )
    A.B.C.D.
    6、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是( )
    A.60B.90C.120D.180
    7、计算半径为1,圆心角为的扇形面积为( )
    A.B.C.D.
    8、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )
    A.6B.C.3D.
    9、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )
    A.相交B.相切
    C.相离D.不确定
    10、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )
    A.105°B.120°C.135°D.150°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是______.
    2、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________.
    3、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为______.(结果保留π)
    4、如图,将△ABC绕点A顺时针旋转得到△ADE,若∠DAE=110°,∠B=40°,则∠C的度数为________.
    5、一个正多边形的中心角是,则这个正多边形的边数为________.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,AB是的直径,CD是的一条弦,且于点E.
    (1)求证:;
    (2)若,,求的半径.
    2、解题与遐想.
    如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=4,BD=5.求Rt△ABC的面积.
    王小明:这道题算出来面积刚好是20,太凑巧了吧.刚好是4×5=20,有种白算的感觉…
    赵丽华:我把4和5换成m、n再算一遍,△ABC的面积总是m•n!确实非常神奇了…
    数学刘老师:大家想一想,既然结果如此简单到极致,不计算能不能得到呢?比如,拼图?
    霍佳:刘老师,我在想另一个东西,这个图能不能尺规画出来啊感觉图都定了.我怎么想不出来呢?
    计算验证
    (1)通过计算求出Rt△ABC的面积.
    拼图演绎
    (2)将Rt△ABC分割放入矩形中(左图),通过拼图能直接“看”出“20”请在图中画出拼图后的4个直角三角形甲、乙、丙、丁的位置,作必要标注并简要说明.
    尺规作图
    (3)尺规作图:如图,点D在线段AB上,以AB为斜边求作一个Rt△ABC,使它的内切圆与斜边AB相切于点D.(保留作图的痕迹,写出必要的文字说明)
    3、如图,在中,,,D是边BC上一点,作射线AD,满足,在射线AD取一点E,且.将线段AE绕点A逆时针旋转90°,得到线段AF,连接BE,FE,连接FC并延长交BE于点G.
    (1)依题意补全图形;
    (2)求的度数;
    (3)连接GA,用等式表示线段GA,GB,GC之间的数量关系,并证明.
    4、如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,半径OD弦BC.
    (1)求证:弧AD=弧CD;
    (2)连接AC、BD相交于点F,AC与OD相交于点E,连接CD,若⊙O的半径为5,BC=6,求CD和EF的长.
    5、在平面直角坐标系xOy中,对于点P,O,Q给出如下定义:若OQ<PO<PQ且PO≤2,我们称点P是线段OQ的“潜力点”
    已知点O(0,0),Q(1,0)
    (1)在P1(0,-1),P2(,),P3(-1,1)中是线段OQ的“潜力点”是_____________;
    (2)若点P在直线y=x上,且为线段OQ的“潜力点”,求点P横坐标的取值范围;
    (3)直线y=2x+b与x轴交于点M,与y轴交于点N,当线段MN上存在线段OQ 的“潜力点”时,直接写出b的取值范围
    -参考答案-
    一、单选题
    1、D
    【分析】
    由平角的性质得出∠BCD=116°,再由内接四边形对角互补得出∠A=64°,再由圆周角定理即可求得∠BOD=2∠A=128°.
    【详解】


    ∵四边形内接于

    又∵
    ∴.
    故选:D.
    【点睛】
    本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.
    2、B
    【分析】
    根据旋转可得,,得.
    【详解】
    解:,,

    将绕点逆时针旋转得到△,使点的对应点恰好落在边上,
    ,,

    故选:B.
    【点睛】
    本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.
    3、A
    【分析】
    取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.
    【详解】
    解:如图,取BC的中点G,连接MG,
    ∵旋转角为60°,
    ∴∠MBH+∠HBN=60°,
    又∵∠MBH+∠MBC=∠ABC=60°,
    ∴∠HBN=∠GBM,
    ∵CH是等边△ABC的对称轴,
    ∴HB=AB,
    ∴HB=BG,
    又∵MB旋转到BN,
    ∴BM=BN,
    在△MBG和△NBH中,

    ∴△MBG≌△NBH(SAS),
    ∴MG=NH,
    根据垂线段最短,MG⊥CH时,MG最短,即HN最短,
    此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,
    ∴MG=CG=,
    ∴HN=,
    故选A.
    【点睛】
    本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
    4、A
    【分析】
    根据等边三角形的对称性判断即可.
    【详解】
    ∵等边三角形是轴对称图形,但不是中心对称图形,
    ∴B,C,D都不符合题意;
    故选:A.
    【点睛】
    本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.
    5、D
    【分析】
    连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.
    【详解】
    解:连接CD,如图所示:
    ∵点D是AB的中点,,,
    ∴,
    ∵,
    ∴,
    在Rt△ACB中,由勾股定理可得;
    故选D.
    【点睛】
    本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.
    6、C
    【分析】
    根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.
    【详解】
    解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120°.
    故选C.
    【点睛】
    本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.
    7、B
    【分析】
    直接根据扇形的面积公式计算即可.
    【详解】
    故选:B.
    【点睛】
    本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.
    8、D
    【分析】
    如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.
    【详解】
    解:如图所示,设圆的圆心为O,连接OC,OB,
    ∵AC,AB都是圆O的切线,
    ∴∠OCA=∠OBA=90°,OC=OB,
    又∵OA=OA,
    ∴Rt△OCA≌Rt△OBA(HL),
    ∴∠OAC=∠OAB,
    ∵∠DAC=60°,
    ∴,
    ∴∠AOB=30°,
    ∴OA=2AB=6,
    ∴,
    ∴圆O的直径为,
    故选D.
    【点睛】
    本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.
    9、B
    【分析】
    根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
    【详解】
    解:连接,
    ,点O为AB中点.
    CO为⊙C的半径,
    是的切线,
    ⊙C 与AB的位置关系是相切
    故选B
    【点睛】
    本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
    10、B
    【分析】
    由题意易得,然后根据三角形外角的性质可求解.
    【详解】
    解:由旋转的性质可得:,
    ∴;
    故选B.
    【点睛】
    本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.
    二、填空题
    1、35°
    【分析】
    根据旋转的性质可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
    【详解】
    解:∵△COD是△AOB绕点O顺时针旋转30°后得到的图形,
    ∴∠AOD=∠BOC=30°,AO=DO,
    ∵∠AOC=100°,
    ∴∠BOD=100°−30°×2=40°,
    ∠ADO=∠A=(180°−∠AOD)=(180°−30°)=75°,
    由三角形的外角性质得,∠B=∠ADO−∠BOD=75°−40°=35°.
    故答案为:35°.
    【点睛】
    本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
    2、 4
    【分析】
    设一直角边长为x,另一直角边长为(6-x)根据勾股定理,解一元二次方程求出,根据这个直角三角形的斜边长为外接圆的直径,可求外接圆的半径为cm,利用三角形面积公式求即可.
    【详解】
    解:设一直角边长为x,另一直角边长为(6-x),
    ∵三角形是直角三角形,
    ∴根据勾股定理,
    整理得:,
    解得,
    这个直角三角形的斜边长为外接圆的直径,
    ∴外接圆的半径为cm,
    三角形面积为.
    故答案为;.
    【点睛】
    本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.
    3、
    【分析】
    先求出A、B、C坐标,再证明三角形BOC是等边三角形,最后根据扇形面积公式计算即可.
    【详解】
    过C作CD⊥OA于D
    ∵一次函数的图象与x轴交于点A,与y轴交于点B,
    ∴当时,,B点坐标为(0,1)
    当时,,A点坐标为

    ∵作的外接圆,
    ∴线段AB中点C的坐标为,
    ∴三角形BOC是等边三角形

    ∵C的坐标为


    故答案为:
    【点睛】
    本题主要考查了一次函数的综合运用,求扇形面积.用已知点的坐标表示相应的线段是解题的关键.
    4、
    【分析】
    先根据旋转的性质求得,再运用三角形内角和定理求解即可.
    【详解】
    解:将△ABC绕点A顺时针旋转得到△ADE,∠DAE=110°



    故答案是:30°.
    【点睛】
    本题主要考查了旋转的性质、三角形内角和定理等知识点,灵活运用旋转的性质是解答本题的关键.
    5、九9
    【分析】
    根据正多边形的每个中心角相等,且所有中心角的度数和为360°进行求解即可.
    【详解】
    解:设这个正多边形的边数为n,
    ∵这个正多边形的中心角是40°,
    ∴,
    ∴,
    ∴这个正多边形是九边形,
    故答案为:九.
    【点睛】
    本题主要考查了正多边形的性质,熟知正多边形中心角的度数和为360度是解题的关键.
    三、解答题
    1、(1)见解析;(2)3
    【分析】
    (1)根据∠D=∠B,∠BCO=∠B,代换证明;
    (2)根据垂径定理,得CE=,,利用勾股定理计算即可.
    【详解】
    (1)证明:
    ∵OC=OB,
    ∴∠BCO=∠B;
    ∵,
    ∴∠B=∠D;
    ∴∠BCO=∠D;
    (2)解:∵AB是⊙O的直径,且CD⊥AB于点E,
    ∴CE=CD,
    ∵CD=,
    ∴CE=,
    在Rt△OCE中,,
    ∵OE=1,
    ∴,
    ∴;
    ∴⊙O的半径为3.
    【点睛】
    本题考查了圆周角定理,垂径定理,勾股定理,结合图形,熟练运用三个定理是解题的关键.
    2、(1)S△ABC=20;(2)见解析;(3)见解析.
    【分析】
    (1)设⊙O的半径为r,由切线长定理得,AE=AD=4,BF=BD=5,CE=CF=r,由勾股定理得,(r+4)2+(r+5)2=92,进而求得结果;
    (2)根据切线长定理可证明甲和乙两个三角形全等,丙丁两个三角形全等,故将甲乙图形放在OE为边的上方,将丙丁以OP为边放在右侧,围成矩形的边长是4和5;
    (3)可先计算∠AFB=135°,根据“定弦对定角”作F点的轨迹,根据切线性质,过点F作AB的垂线,再根据直径所对的圆周角是90°,确定点C.
    【详解】
    解:(1)如图1,
    设⊙O的半径为r,
    连接OE,OF,
    ∵⊙O内切于△ABC,
    ∴OE⊥AC,OF⊥BC,AE=AD=4,BF=BD=5,
    ∴∠OEC=∠OFC=∠C=90°,
    ∴四边形ECFO是矩形,
    ∴CF=OE=r,CE=OF=r,
    ∴AC=4+r,BC=5+r,
    在Rt△ABC中,由勾股定理得,
    (r+4)2+(r+5)2=92,
    ∴r2+9r=20,
    ∴S△ABC=



    =20;
    (2)
    如图2,
    (3)设△ABC的内切圆记作⊙F,
    ∴AF和BF平分∠BAC和∠ABC,FD⊥AB,
    ∴∠BAF=∠CAB,∠ABF=,
    ∴∠BAF+∠ABF=(∠BAC+∠ABC)==45°,
    ∴∠AFB=135°,
    可以按以下步骤作图(如图3):
    ①以BA为直径作圆,作AB的垂直平分线交圆于点E,
    ②以E为圆心,AE为半径作圆,
    ③过点D作AB的垂线,交圆于F,
    ④连接EF并延长交圆于C,连接AC,BC,
    则△ABC就是求作的三角形.
    【点睛】
    本题考查三角形的内切圆性质、切线长定理、勾股定理、矩形的判定与性质、尺规作图-作垂线,熟练掌握相关知识的联系与运用是解答的关键.
    3、
    (1)见解析;
    (2)
    (3)
    【分析】
    (1)根据题意补全图形即可;
    (2)根据旋转的性质可得,,进而证明,可得,根据角度的转换可得,进而根据三角形的外角性质即可证明;
    (3)过点作,证明,进而根据勾股定理以及线段的转换即可得到
    (1)
    如图,
    (2)
    将线段AE绕点A逆时针旋转90°,得到线段AF,
    ,
    ,


    (3)
    证明如下,如图,过点作,
    又,



    【点睛】
    本题考查了旋转的性质,三角形全等的性质与判定,勾股定理,等腰三角形的性质,掌握旋转的性质是解题的关键.
    4、(1)见解析;(2)CD=,EF=1.
    【分析】
    (1)连接OC,根据圆的性质,得到OB=OC;根据等腰三角形的性质,得到;根据平行线的性质,得到;在同圆和等圆中,根据相等的圆心解所对的弧等即得证.
    (2)根据直径所对的圆周角是直角求出∠ACB=90°,根据平行线的性质求得∠AEO=∠ACB=90°,利用勾股定理求出AC=8,根据垂径定理求得EC=AE=4,根据中位线定理求出OE,在Rt△CDE中,根据勾股定理求出CD,因为,所以△EDF∽△BCF,最后根据似的性质,列方程求解即可.
    【详解】
    (1)解:连结OC.

    ∴∠1=∠B
    ∠2=∠C
    ∵OB =OC
    ∴∠B=∠C
    ∴∠1=∠2
    ∴弧AD=弧CD
    (2)∵AB是的直径
    ∴∠ACB=90°

    ∴∠AEO=∠ACB=90°
    Rt△ABC中,∠ACB=90°,
    ∵BC=6,AB=10
    ∴AC=8
    ∵半径OD⊥AC于E
    ∴EC=AE=4
    OE=
    ∴ED=2
    由勾股定理得,CD=

    ∴△EDF∽△CBF

    设EF=x,则FC=4-x
    ∴EF=1,经检验符合题意.
    【点睛】
    本题考查了圆的综合题,圆的有关性质:圆的半径相等;同圆或等圆中,相等的圆心角所对的弧等;直径所对的圆周角是直角;垂径定理;平行线的性质,勾股定理,三角形中位线定理,三角形相似的判定和性质等知识,正确理解圆的相关性质是解题的关键.
    5、(1);(2);(3)或
    【分析】
    (1)分别计算出OQ、PO和PQ的长度,比较即可得出答案;
    (2)先判断点P在以O为圆心,1为半径的圆外且点P在线段OQ垂直平分线的左侧,结合PO≤2,点P在以O为圆心,2为半径的圆上或圆内,可得点P在如图所示的线段AB上(不包含点B),过作轴,过作轴,垂足分别为 再根据图形的性质求解 从而可得答案;
    (3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,而PO<PQ,点P在线段OQ垂直平分线的左侧,再分两种情况讨论:当时,当时,分别画出两种情况下的临界直线 再根据临界直线经过的特殊点求解的值,再确定范围即可.
    【详解】
    解:(1) O(0,0),Q(1,0),

    P1(0,-1),P2(,),P3(-1,1)
    不满足OQ<PO<PQ且PO≤2,
    所以不是线段OQ的“潜力点”,
    同理:
    所以不满足OQ<PO<PQ且PO≤2,
    所以不是线段OQ的“潜力点”,
    同理:

    所以满足:OQ<PO<PQ且PO≤2,
    所以是线段OQ的“潜力点”,
    故答案为:P3
    (2)∵点P为线段OQ的“潜力点”,
    ∴OQ<PO<PQ且PO≤2,
    ∵OQ<PO,
    ∴点P在以O为圆心,1为半径的圆外
    ∵PO<PQ,
    ∴点P在线段OQ垂直平分线的左侧,而的垂直平分线为:
    ∵PO≤2,
    ∴点P在以O为圆心,2为半径的圆上或圆内
    又∵点P在直线y=x上,
    ∴点P在如图所示的线段AB上(不包含点B)
    过作轴,过作轴,垂足分别为
    由题意可知△BOC和 △AOD是等腰三角形,

    ∴-≤xp<-
    (3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,
    而PO<PQ,点P在线段OQ垂直平分线的左侧
    当时,过时,
    即函数解析式为:
    此时 则
    当与半径为2的圆相切于时,则




    当时,如图,同理可得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,
    而PO<PQ,点P在线段OQ垂直平分线的左侧,
    同理:当过 则 直线为
    在直线上,
    此时
    当过时, 则

    所以此时:
    综上:的范围为:1<b≤或<b<-1
    【点睛】
    本题考查的是新定义情境下的知识运用,圆的基本性质,圆的切线的性质,一次函数的综合应用,锐角三角函数的应用,勾股定理的应用,数形结合是解本题的关键.

    相关试卷

    初中数学第24章 圆综合与测试练习:

    这是一份初中数学第24章 圆综合与测试练习,共29页。

    初中数学第24章 圆综合与测试同步测试题:

    这是一份初中数学第24章 圆综合与测试同步测试题,共29页。

    2021学年第24章 圆综合与测试课后作业题:

    这是一份2021学年第24章 圆综合与测试课后作业题,共28页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map