开学活动
搜索
    上传资料 赚现金

    2022年强化训练沪科版九年级数学下册第24章圆同步测试练习题(无超纲)

    2022年强化训练沪科版九年级数学下册第24章圆同步测试练习题(无超纲)第1页
    2022年强化训练沪科版九年级数学下册第24章圆同步测试练习题(无超纲)第2页
    2022年强化训练沪科版九年级数学下册第24章圆同步测试练习题(无超纲)第3页
    还剩34页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第24章 圆综合与测试同步达标检测题

    展开

    这是一份数学九年级下册第24章 圆综合与测试同步达标检测题,共37页。
    沪科版九年级数学下册第24章圆同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB的直径,弦CDAB于点P,则CD的长为(    A. B. C. D.82、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为(    )cm.A.3π B.6π C.12π D.18π3、在半径为6cm的圆中,的圆心角所对弧的弧长是(    A.cm B.cm C.cm D.cm4、如图,在中,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为(    A.1 B.2 C.3 D.45、若的圆心角所对的弧长是,则此弧所在圆的半径为(    A.1 B.2 C.3 D.46、计算半径为1,圆心角为的扇形面积为(    A. B. C. D.7、如图,都是上的点,,垂足为,若,则的度数为(    A. B. C. D.8、如图,AB的直径,的弦DC的延长线与AB的延长线相交于点P于点E,则阴影部分的面积为(    A. B. C. D.9、平面直角坐标系中点关于原点对称的点的坐标是(    A. B. C. D.10、如图,在RtABC中,,点DE分别是ABAC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为;③BP存在最小值为;④点P运动的路径长为.其中,正确的(      A.①②③ B.①②④ C.①③④ D.②③④第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知正多边形的半径与边长相等,那么正多边形的边数是______.2、如图,⊙O的半径为5cm,正六边形ABCDEF内接于⊙O,则图中阴影部分的面积为 ___.3、如图,在矩形中,F中点,P是线段上一点,设,连结并将它绕点P顺时针旋转90°得到线段,连结,则在点P从点B向点C的运动过程中,有下面四个结论:①当时,;②点E到边的距离为m;③直线一定经过点;④的最小值为.其中结论正确的是______.(填序号即可)4、如图,在平面直角坐标系中,一次函数y=-2x+4的图像与x轴、y轴分别交于点AB,将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为_______.5、边长为2的正三角形的外接圆的半径等于___.三、解答题(5小题,每小题10分,共计50分)1、如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PBAB,∠PBA=∠C(1)求证:PB是⊙O的切线;(2)连接OP,若OPBC,且OP=8,⊙O的半径为3,求BC的长.2、如图,中,,连接,点MNP分别是的中点.(1)请你判断的形状,并证明你的结论.(2)将绕点A旋转,若,请直接写出周长的最大值与最小值.3、如图,在RtABC中,∠B=90°,∠BAC的平分线ADBC于点D,点EAC上,以AE为直径的⊙O经过点D(1)求证:BC是⊙O的切线;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.4、如图,,点D上一点,相交于点F,且(1)求证:(2)求证:(3)若点D中点,连接,求证:平分5、对于平面直角坐标系xOy中的图形M和点P给出如下定义:Q为图形M上任意一点,若PQ两点间距离的最大值和最小值都存在,且最大值是最小值的2倍,则称点P为图形M的“二分点”.已知点N(3,0),A(1,0),(1)①在点ABC中,线段ON的“二分点”是______;②点Da,0),若点C为线段OD的“二分点”,求a的取值范围;(2)以点O为圆心,r为半径画圆,若线段AN上存在的“二分点”,直接写出r的取值范围. -参考答案-一、单选题1、A【分析】过点于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.【详解】解:如图,过点于点,连接 AB的直径,中,故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.2、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:它的侧面展开图的面积=×2×2×3=6(cm2).故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.3、C【分析】直接根据题意及弧长公式可直接进行求解.【详解】解:由题意得:的圆心角所对弧的弧长是故选C.【点睛】本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.4、B【分析】由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2.【详解】由题意以及旋转的性质知AD=AB,∠BAD=60°∴∠ADB=∠ABD∵∠ADB+∠ABD+∠BAD=180°∴∠ADB=∠ABD=60°为等边三角形,即AB= AD =BD=2CD=BC-BD=4-2=2故选:B.【点睛】本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形.5、C【分析】先设半径为r,再根据弧长公式建立方程,解出r即可【详解】设半径为r则周长为2πr120°所对应的弧长为解得r=3故选C【点睛】本题考查弧长计算,牢记弧长公式是本题关键.6、B【分析】直接根据扇形的面积公式计算即可.【详解】故选:B.【点睛】本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.7、B【分析】连接OC.根据确定,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出【详解】解:如下图所示,连接OC分别是所对的圆周角和圆心角,故选:B.【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.8、B【分析】由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案.【详解】解:根据题意,如图:AB的直径,OD是半径,AE=CE∴阴影CED的面积等于AED的面积,故选:B【点睛】本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.9、B【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:平面直角坐标系中点关于原点对称的点的坐标是故选B【点睛】本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.10、B【分析】根据,点DE分别是ABAC的中点.得出∠DAE=90°,AD=AE=,可证∠DAB=∠EAC,再证△DAB≌△EAC(SAS),可判断①△AEC≌△ADB正确;作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,根据△AEC≌△ADB,得出∠DBA=∠ECA,可证∠P=∠BAC=90°,CP为⊙A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判断②CP存在最大值为正确;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判断③BP存在最小值为不正确;取BC中点为O,连结AOOPAB=AC=6,∠BAC=90°,BP=CO=AO=,当AECP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,可求∠ACE=30°,根据圆周角定理得出∠AOP=2∠ACE=60°,当ADBP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,可得∠ABD=30°根据圆周角定理得出∠AOP′=2∠ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为L可判断④点P运动的路径长为正确即可.【详解】解:∵,点DE分别是ABAC的中点.∴∠DAE=90°,AD=AE=∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,∴∠DAB=∠EAC,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),故①△AEC≌△ADB正确;作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,∵△AEC≌△ADB,∴∠DBA=∠ECA,∴∠PBA+∠P=∠ECP+∠BAC∴∠P=∠BAC=90°,CP为⊙A的切线,AECP∴∠DPE=∠PEA=∠DAE=90°,∴四边形DAEP为矩形,AD=AE∴四边形DAEP为正方形,PE=AE=3,在Rt△AEC中,CE=CP最大=PE+EC=3+故②CP存在最大值为正确;∵△AEC≌△ADB,BD=CE=在Rt△BPC中,BP最小=BP最短=BD-PD=-3,故③BP存在最小值为不正确;BC中点为O,连结AOOPAB=AC=6,∠BAC=90°,BP=CO=AO=AECP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=∴∠ACE=30°,∴∠AOP=2∠ACE=60°,ADBP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=∴∠ABD=30°,∴∠AOP′=2∠ABD=60°,∴点P在以点O为圆心,OA长为半径,的圆上运动轨迹为∵∠POP=∠POA+∠AOP′=60°+60°=120°,L故④点P运动的路径长为正确;正确的是①②④.故选B.【点睛】本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键.二、填空题1、六【分析】设这个正多边形的边数为n,根据题意可知OA=OB=AB,则△OAB是等边三角形,得到∠AOB=60°,则,由此即可得到答案.【详解】解:设这个正多边形的边数为n∵正多边形的半径与边长相等,OA=OB=AB∴△OAB是等边三角形,∴∠AOB=60°,∴正多边形的边数是六,故答案为:六.【点睛】本题主要考查了正多边形和圆,等边三角形的性质与判定,熟知相关知识是解题的关键.2、【分析】根据图形分析可得求阴影部分面积实为求扇形面积,将原图阴影部分面积转化为扇形面积求解即可.【详解】如图,连接BOOCOA由题意得:△BOC,△AOB都是等边三角形,∴∠AOB=∠OBC=60°,∴OA∥BC,故答案为:【点睛】本题考查正多边形与圆、扇形的面积公式、平行线的性质等知识,解题的关键是得出3、②③④【分析】①当点的右边时,得出即可判断;②证明出即可判断;③根据为等腰直角三角形,得出都是等腰直角三角形,得到即可判断;④当时,有最小值,计算即可.【详解】解:为等腰直角三角形,点的左边时,点的右边时,故①错误;过点中,根据旋转的性质得:故②正确;由①中得知为等腰直角三角形,也是等腰直角三角形,过点不管P上怎么运动,得到都是等腰直角三角形,即直线一定经过点故③正确;是等腰直角三角形,时,有最小值,为等腰直角三角形,由勾股定理:故④正确;故答案是:②③④.【点睛】本题是四边形综合题,考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理,等腰直角三角形,解题的关键是灵活运用这些性质进行推理.4、##【分析】先求出点AB的坐标,过点AAFAB,交直线BC于点F,过点FEFx轴,垂足为E,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F的坐标,再利用待定系数法,即可求出答案.【详解】解:∵一次函数y=-2x+4的图像与x轴、y轴分别交于点AB两点,∴令,则;令,则∴点A为(2,0),点B为(0,4),过点AAFAB,交直线BC于点F,过点FEFx轴,垂足为E,如图,∴△ABF是等腰直角三角形,AF=AB∴△ABO≌△FAEAAS),AO=FEBO=AE∴点F的坐标为();设直线BC,则,解得:∴直线BC的函数表达式为故答案为:【点睛】本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.5、【分析】过圆心作一边的垂线,根据勾股定理可以计算出外接圆半径.【详解】如图所示,是正三角形,故O的中心,∵正三角形的边长为2,OEAB由勾股定理得:(负值舍去).故答案为:【点睛】本题考查了正多边形和圆,解题的关键是根据题意画出图形,利用数形结合求解.三、解答题1、(1)见解析(2)【分析】(1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;(2)证明,得出对应边成比例,即可求出的长.(1)证明:连接,如图所示:的直径,的切线;(2)解:的半径为【点睛】本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定.2、(1)是等腰直角三角形,证明见解析(2)周长最小值为。最大值为【分析】(1)连接BD,CE,根据SAS证明得BD=CE,根据三角形中位线性质可证明PM=PN;,进而可得结论;(2)当BD最小时即点D在AB上,此时周长最小,当点D在BA的延长线上时,BD最大,此时周长最大,均为,求出BD的长即可解决问题.(1)连接BD,CE,如图, ∴BD=CE,∵点MNP分别是的中点//,PN//BD,PN=BD∴PM=PN, ∵PN//BD∴∠PNC=∠DBC∴∠MPN=∠MPD+∠DPN=∠ECA+∠ACD+∠PCN+∠PNC=∠ACB+∠DBC+∠ABD=∠ACB+∠ABC=90° 是等腰直角三角形;(2)由(1)知,是等腰直角三角形 的周长为 的周长为 当BD最小时即点D在AB上,此时周长最小,∵AB=8,AD=3∴BD的最小值为AB-AD=8-3=5周长最小为当点D在BA的延长线上时,BD最大,此时周长最大,∴BD=AB+AD=8+3=11周长最大为【点睛】此题主要考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,三角形中位线定理的应用等知识,熟练掌握相关知识是解答本题的关键.3、(1)①见解析;②见解析;(2)【分析】(1)①连接OD,由角平分线的性质解得,再根据内错角相等,两直线平行,证明,继而由两直线平行,同旁内角互补证明即可解题;②连接DE,由弦切角定理得到,再证明,由相似三角形对应边成比例解题;(2)证明是等边三角形,四边形DOAF是菱形,,结合扇形面积公式解题.【详解】解:(1)①连接OD是∠BAC的平分线是⊙O的切线;②连接DE是⊙O的切线,是直径(2)连接DEODDFOF,设圆的半径为RF是劣弧AD的中点,OFDA中垂线DF=AF是等边三角形,四边形DOAF是菱形,【点睛】本题考查圆的综合题,涉及切线的判定与性质、平行四边形的性质、等边三角形的判定与性质、相似三角形的判定与性质、扇形面积等知识,综合性较强,有难度,掌握相关知识是解题关键.4、(1)证明见解析;(2)证明见解析;(3)证明见解析【分析】(1)在中,,故可证明三角形相似.(2)由得出(3)法一:由题意知,由,有,所以可得,又因为可得;由于,进而说明,得出平分.法二:通过得出FDCE四点共圆,由,从而得出平分【详解】解:(1)证明在 (2)证明:在 (3)证明:D中点平分法二:FDCE四点共圆D点,平分【点睛】本题考察了相似三角形的判定,全等三角形,角平分线,圆内接四边形等知识点.解题的关键与难点在于角度的转化.解题技巧:多个角度相等时可考虑将几何图形放入圆中利用同弧或等弧所对圆周角相等求解.5、(1)①BC;②;(2)【分析】(1)①分别找出点ABC到线段ON的最小值和最大值,是否满足“二分点”定义即可;②对a的取值分情况讨论:,根据“二分点”的定义可求解;(2)设线段AN上存在的“二分点”为,对的取值分情况讨论,根据“二分点”的定义可求解.【详解】(1)①∵点AON上,故最小值为0,不符合题意,BON的最小值为,最大值为∴点B是线段ON的“二分点”,CON的最小值为1,最大值为∴点C是线段ON的“二分点”,故答案为:BC②若时,如图所示:COD的最小值为,最大值为∵点C为线段OD的“二分点”,解得:,如图所示:COD的最小值为1,最大值为,满足题意;时,如图所示:COD的最小值为1,最大值为∵点C为线段OD的“二分点”,解得:(舍);时,如图所示:COD的最小值为,最大值为∵点C为线段OD的“二分点”,解得:(舍),综上所得:a的取值范围为(2)如图所示,设线段AN上存在的“二分点”为时,最小值为:,最大值为:,即时,最小值为:,最大值为:∴∴,即不存在;时,最小值为:,最大值为:,即不存在;时,最小值为:,最大值为:,即综上所述,r的取值范围为【点睛】本题考查坐标上的两点距离,解一元二次方程解不等式以及点到圆的距离求最值,根据题目所给条件,掌握“二分点”的定义是解题的关键. 

    相关试卷

    沪科版九年级下册第24章 圆综合与测试当堂检测题:

    这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共32页。试卷主要包含了下列说法正确的个数有,等边三角形等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试课堂检测:

    这是一份沪科版九年级下册第24章 圆综合与测试课堂检测,共26页。试卷主要包含了下列判断正确的个数有等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试达标测试:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试达标测试,共33页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map