开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析沪科版九年级数学下册第24章圆必考点解析试卷(含答案详解)

    2022年精品解析沪科版九年级数学下册第24章圆必考点解析试卷(含答案详解)第1页
    2022年精品解析沪科版九年级数学下册第24章圆必考点解析试卷(含答案详解)第2页
    2022年精品解析沪科版九年级数学下册第24章圆必考点解析试卷(含答案详解)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第24章 圆综合与测试同步达标检测题

    展开

    这是一份初中数学第24章 圆综合与测试同步达标检测题,共31页。试卷主要包含了已知⊙O的半径为4,,则点A在,下列说法正确的个数有等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,DC是⊙O的直径,弦ABCDM,则下列结论不一定成立的是(    )A.AM=BM B.CM=DM C. D.2、图2是由图1经过某一种图形的运动得到的,这种图形的运动是(    A.平移 B.翻折 C.旋转 D.以上三种都不对3、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为(    )cm.A.3π B.6π C.12π D.18π4、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是(    A. B. C. D.5、如图,AB的直径,弦CDAB于点P,则CD的长为(    A. B. C. D.86、已知⊙O的半径为4,,则点A在(      A.⊙O B.⊙O C.⊙O D.无法确定7、下列说法正确的个数有(    ①方程的两个实数根的和等于1;②半圆是弧;③正八边形是中心对称图形;④“抛掷3枚质地均匀的硬币全部正面朝上”是随机事件;⑤如果反比例函数的图象经过点,则这个函数图象位于第二、四象限.A.2个 B.3个 C.4个 D.5个8、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是(  )A.1cm B.2cm C.2cm D.4cm9、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是(    A.  B. C.  D.10、的边经过圆心与圆相切于点,若,则的大小等于(    A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知60°的圆心角所对的弧长是3.14厘米,则它所在圆的周长是______厘米.2、如图,在中,内的一个动点,满足.若,则长的最小值为_______.3、如图,半圆O中,直径AB=30,弦CDAB长为6π,则由ACAD围成的阴影部分面积为_______.4、如图,PAPB的切线,切点分别为AB.若,则AB的长为______.5、如图,在平行四边形中,,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为________.(结果保留三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC是⊙O的内接三角形,∠B=45°,连接OC,过点AADOC,交BC的延长线于D(1)求证:AD是⊙O的切线;(2)若⊙O的半径为2,∠OCB=75°,求△ABCAB的长.2、如图,的直径,四边形内接于的中点,的延长线于点(1)求证:的切线;(2)若,求的长.3、如图,AB是⊙O的直径,弦CDAB于点EAM是△ACD的外角∠DAF的平分线.(1)求证:AM是⊙O的切线;(2)连接CO并延长交AM于点N,若⊙O的半径为2,∠ANC = 30°,求CD的长.4、新定义:在平面直角坐标系xOy中,若几何图形G与⊙A有公共点,则称几何图形G为⊙A的关联图形,特别地,若⊙A的关联图形G为直线,则称该直线为⊙A的关联直线.如图1,∠M为⊙A的关联图形,直线l为⊙A的关联直线.(1)已知⊙O是以原点为圆心,2为半径的圆,下列图形:①直线y=2x+2;②直线y=﹣x+3;③双曲线y,是⊙O的关联图形的是    (请直接写出正确的序号).(2)如图2,⊙T的圆心为T(1,0),半径为1,直线ly=﹣x+bx轴交于点N,若直线l是⊙T的关联直线,求点N的横坐标的取值范围.(3)如图3,已知点B(0,2),C(2,0),D(0,﹣2),⊙I经过点C,⊙I的关联直线HB经过点B,与⊙I的一个交点为P;⊙I的关联直线HD经过点D,与⊙I的一个交点为Q;直线HBHD交于点H,若线段PQ在直线x=6上且恰为⊙I的直径,请直接写出点H横坐标h的取值范围.5、如图,正方形ABCD的顶点ABx轴的负半轴上,顶点CD在第二象限.将正方形ABCD绕点A按顺时针方向旋转,BCD的对应点分别为B1C1D1,且D1C1O三点在一条直线上.记点D1坐标是(mn),C1的坐标是(pq).(1)设∠DAD1=30°,n=2,求证:OD1的长度;(2)若∠DAD1<90°,mn满足m+n=﹣4,p2+q2=25,求p+q的值. -参考答案-一、单选题1、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.【详解】解:∵弦ABCDCD过圆心OAM=BM即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CMDM不一定相等,故选B.【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理.2、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C.【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.3、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:它的侧面展开图的面积=×2×2×3=6(cm2).故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.4、C【分析】如图,过点CCTAB于点T,过点OOHAB于点H,交⊙O于点K,连接AOAK,解直角三角形求出AB,求出CT的最大值,可得结论.【详解】解:如图,过点CCTAB 于点T,过点OOHAB于点H,交⊙O于点K,连接AOAK由题意可得AB垂直平分线段OKAO=AKOH=HK=3,OA=OKOA=OK=AK∴∠OAK=∠AOK=60°,AH=OA×sin60°=6×=3OHABAH=BHAB=2AH=6OC+OHCTCT⩽6+3=9,CT的最大值为9,∴△ABC的面积的最大值为=27故选:C.【点睛】本题考查垂径定理、三角函数、三角形的面积、垂线段最短等知识,解题的关键是求出CT的最大值,属于中考常考题型.5、A【分析】过点于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.【详解】解:如图,过点于点,连接 AB的直径,中,故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.6、C【分析】根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.【详解】解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,d>r∴点A在⊙O外,故选:C.【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔dr;②点P在圆上⇔d=r;③点P在圆内⇔dr7、B【分析】根据所学知识对五个命题进行判断即可.【详解】1、,故方程无实数根,故本命题错误;2、圆上任意两点间的部分叫做圆弧,半圆也是,故本命题正确;3、八边形绕中心旋转180°以后仍然与原图重合,故本命题正确;4、抛硬币无论抛多少,出现正反面朝上都是随机事件,故抛三枚硬币全部正面朝上也是随机事件,故本命题正确;5、反比例函数的图象经过点 (1,2) ,则,它的函数图像位于一三象限,故本命题错误综上所述,正确个数为3故选B【点睛】本题考查一元二次函数判别式、弧的定义、中心对称图形判断、随机事件理解、反比例函数图像,掌握这些是本题关键.8、D【分析】根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.【详解】解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过 设半径为r,即OA=OB=AB=rOM=OA•sin∠OAB=∵圆O的内接正六边形的面积为(cm2), ∴△AOB的面积为(cm2), 解得r=4, 故选:D.【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.9、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.不是轴对称图形,是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.【详解】解:连接 与圆相切于点故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.二、填空题1、18.84【分析】先根据弧长公式求得πr,然后再运用圆的周长公式解答即可.【详解】解:设圆弧所在圆的半径为厘米,解得则它所在圆的周长为(厘米),故答案为:【点睛】本题主要考查了弧长公式、圆的周长公式等知识点,牢记弧长公式是解答本题的关键.2、2【分析】AC中点O,由勾股定理的逆定理可知∠ADC=90°,则点D在以O为圆心,以AC为直径的圆上,作△ADC外接圆,连接BO,交圆O,则长的最小值即为,由此求解即可.【详解】解:如图所示,取AC中点O,即∴∠ADC=90°,∴点D在以O为圆心,以AC为直径的圆上,作△ADC外接圆,连接BO,交圆O,则长的最小值即为,∠ACB=90°,故答案为:2.【点睛】本题主要考查了一点到圆上一点的最短距离,勾股定理的逆定理,勾股定理,解题的关键在于确定点D的运动轨迹.3、45【分析】连接OCOD,根据同底等高可知SACD=SOCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解.【详解】解:连接OCOD∵直径AB=30,OC=OD=CDABSACD=SOCD长为6π∴阴影部分的面积为S阴影=S扇形OCD=故答案为:45π【点睛】本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.4、3【分析】由切线长定理和,可得为等边三角形,则【详解】解:连接,如下图:分别为的切线,为等腰三角形,为等边三角形,故答案为:3.【点睛】本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.5、【分析】过点C于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可.【详解】解:过点C于点H在平行四边形中,平行四边形的面积为:图中黑色阴影部分的面积为:故答案为:【点睛】本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键.三、解答题1、(1)见解析;(2)【分析】(1)如图所示,连接OA,由圆周角定理可得∠COA=90°,再由平行线的性质得到∠OAD+∠COA=180°,则∠OAD=90°,由此即可证明;(2)连接OB,过点OOEAB,垂足为E,先由等腰三角形的性质与三角形内角和定理求出∠COB =30°,则∠AOB=120°,可以得到∠OAB=∠OBA=30°,由勾股定理可得,求出,则AB=【详解】解:(1)如图所示,连接OA∵∠CBA=45°,∴∠COA=90°,      ADOC∴∠OAD+∠COA=180°,∴∠OAD=90°,又∵点A在圆O上,       AD是⊙O的切线;     (2)连接OB,过点OOEAB,垂足为E∵∠OCB=75°,OB=OC∴∠OCB=∠OBC=75°,∴∠COB=180°-∠OCB-∠OBC=30°,              由(1)证可得∠AOC=90°,∴∠AOB=120°,                   OA=OB∴∠OAB=∠OBA=30°,又∵OEABAE=BE   RtAOE中,AO=2,∠OAE=30°,OE=AO=1,                          由勾股定理可得,AB=【点睛】本题主要考查了圆周角定理,切线的判定,等腰三角形的性质与判定,含30度角的直角三角形的性质,三角形内角和定理,勾股定理,熟知相关知识是解题的关键.2、(1)见详解;(2)【分析】(1)连接OD,由圆周角定理可得∠AOD=∠ABC,从而得ODBC,进而即可得到结论;(2)连接AC,交OD于点F,利用勾股定理可得AC,再证明四边形DFCE是矩形,进而即可求解.【详解】(1)证明:连接OD的中点,∴∠ABC=2∠ABD∵∠AOD=2∠ABD∴∠AOD=∠ABCODBC的切线;(2)连接AC,交OD于点FAB是直径,∴∠ACB=90°,AC=的中点,ODACAF=CF=3,DF=5-4=1,∵∠E=∠EDF=∠DFC=90°,∴四边形DFCE是矩形,DE=CF=3,CE=DF=1,AD=CD=∵∠ADB=90°,【点睛】本题主要考查切线的判定定理,圆周角定理以及勾股定理,添加辅助线构造直角三角形和矩形,是解题的关键.3、(1)见解析(2)CD=2【分析】(1)由题意易得BC=BD,∠DAM=DAF,则有∠CAB=DAB,进而可得∠BAM=90°,然后问题可求证;(2)由题意易得CD//AM,∠ANC=OCE=30°,然后可得OE=1,CE=,进而问题可求解.(1)证明:∵AB是⊙O的直径,弦CDAB于点EBC=BD∴∠CAB=DABAM是∠DAF的平分线∴∠DAM=DAF∵∠CAD+DAF=180°∴∠DAB+DAM=90°即∠BAM=90°,ABAMAM是⊙O的切线(2)解:∵ABCDABAM CD//AM∴∠ANC=OCE=30°Rt△OCE中,OC=2OE=1,CE=AB是⊙O的直径,弦CDAB于点ECD=2CE=2【点睛】本题主要考查切线的判定定理、垂径定理及含30度直角三角形的性质,熟练掌握切线的判定定理、垂径定理及含30度直角三角形的性质是解题的关键.4、(1)①③;(2)N的横坐标;(3)【分析】(1)在坐标系中作出圆及三个函数图象,即可得;(2)根据题意可得直线l的临界状态是与圆T相切的两条直线,当临界状态为时;当临界状态为时,根据勾股定理及直角三角形的性质即可得;(3)根据题意,只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,分三种情况讨论:①当点Q在点P的上方时,连接BPDQ,交于点H;②当点P在点Q的上方时,直线BPDQ,交于点H,求出直线HB、直线HD的解析式,然后利用两点之间的距离解方程求解;③当时,两条直线与圆无公共点;综合三种情况即可得.【详解】解:(1)在坐标系中作出圆及三个函数图象,可得①③函数解析式与圆有公共点,故答案为:①③;(2)如图所示:∵直线l的关联直线,∴直线l的临界状态是与相切的两条直线当临界状态为时,连接TM∵当时,时,为等腰直角三角形,∴点同理可得当临界状态为时,N的横坐标(3)①如图所示:只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,当点Q在点P的上方时,连接BPDQ,交于点H设点,直线HB的解析式为,直线HD的解析式为时,互为相反数,可得由图可得:,则结合解得:时,h的最大值为②如图所示:当点P在点Q的上方时,直线BPDQ,交于点H,当圆心Ix轴上时, 设点,直线HB的解析式为,直线HD的解析式为时,互为相反数,可得由图可得:,则结合解得:时,h的最小值为③当时,两条直线与圆无公共点,不符合题意,综上可得:【点睛】题目主要考查直线与圆的位置关系,等腰三角形的性质,勾股定理解三角形等,理解题意,作出相应图形是解题关键.5、(1)4;(2)-1或-7【分析】(1)如图,三点在一条直线上的情况,连接,过点作垂线交点为,在直角三角形中,,可求的长;(2)如图,过点作垂线交点为,过点轴垂线交于点,作交点为;由,知,点G坐标为,得,由的值,从而得到的值.【详解】解:(1)∵∠DAD1=30°且D1C1O三点在一条直线上∴如图所示,连接,过点作垂线交点为(2)如图过点作垂线交点为,过点轴垂线交于点,作交点为点横坐标可表示为p+q=-7或-1.【点睛】本题考查了锐角三角函数值,三角形全等,图形旋转的性质等知识.解题的关键与难点是找出线段之间的关系. 

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试课后测评:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后测评,共35页。

    沪科版九年级下册第24章 圆综合与测试课时训练:

    这是一份沪科版九年级下册第24章 圆综合与测试课时训练,共42页。试卷主要包含了如图,点A等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试课堂检测:

    这是一份沪科版九年级下册第24章 圆综合与测试课堂检测,共40页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map