搜索
    上传资料 赚现金
    英语朗读宝

    2022年沪科版九年级数学下册第24章圆必考点解析试题(含详解)

    2022年沪科版九年级数学下册第24章圆必考点解析试题(含详解)第1页
    2022年沪科版九年级数学下册第24章圆必考点解析试题(含详解)第2页
    2022年沪科版九年级数学下册第24章圆必考点解析试题(含详解)第3页
    还剩33页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试精练

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试精练,共36页。试卷主要包含了等边三角形等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆必考点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是(    )

    A.AM=BM B.CM=DM C. D.
    2、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于(  )

    A.10 B.6 C.6 D.12
    3、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )

    A.相交 B.相切
    C.相离 D.不确定
    4、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )

    A.50° B.70° C.110° D.120°
    5、下列图形中,既是轴对称图形又是中心对称图形的是(  )
    A. B.
    C. D.
    6、下列图形中,既是中心对称图形也是轴对称图形的是( )
    A. B. C. D.
    7、如图,,,,都是上的点,,垂足为,若,则的度数为( )

    A. B. C. D.
    8、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是( )

    A. B.1 C.2 D.
    9、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是( )
    A.2个 B.3个 C.4个 D.5个
    10、如图,是△ABC的外接圆,已知,则的大小为( )

    A.55° B.60° C.65° D.75°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在中,,,.绕点B顺时针方向旋转45°得到,点A经过的路径为弧,点C经过的路径为弧,则图中阴影部分的面积为______.(结果保留)

    2、如图,已知正方形ABCD的边长为6,E为CD边上一点,将绕点A旋转至,连接,若,则的长等于______.

    3、两直角边分别为6、8,那么的内接圆的半径为____________.
    4、如图,在平面直角坐标系内,∠OA0A1=90°,∠A1OA0=60°,以OA1为直角边向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法进行下去,得到 Rt△OA2A3,Rt△OA3A4…,若点A0的坐标是(1,0),则点A2021的横坐标是___________.

    5、如图,、分别与相切于A、B两点,若,则的度数为________.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图AB是⊙O的直径,弦CD⊥AB于点E,作∠FAC=∠BAC,过点C作CF⊥AF于点F.

    (1)求证:CF是⊙O的切线;
    (2)若sin∠CAB=,求=_______.(直接写出答案)
    2、如图,抛物线(a为常数,)与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,且OB=OC.

    (1)求a的值;
    (2)点D是该抛物线的顶点,点P(m,n)是第三象限内抛物线上的一个点,分别连接BD、BC、CD、BP,当∠PBA=∠CBD时,求m的值;
    (3)点K为坐标平面内一点,DK=2,点M为线段BK的中点,连接AM,当AM最大时,求点K的坐标.
    3、将锐角为45°的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,∠MPN的两边分别与正方形的边BC、DC或其所在直线相交于点E、F,连接EF.
    (1)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC相交时,如图1所示,请直接写出线段BE、DF、EF满足的数量关系;
    (2)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC的延长线相交时,如图2所示,请直接写出线段BE、DF、EF满足的数量关系;
    (3)若正方形的边长为4,在三角板旋转过程中,当∠MPN的一边恰好经过BC边的中点时,试求线段EF的长.

    4、如图,在中,,O为AC上一点,以点O为圆心,OC为半径的圆恰好与AB相切,切点为D,与AC的另一个交点为E.

    (1)求证:BO平分;
    (2)若,,求BO的长.
    5、(教材呈现)下图是华师版九年级下册数学教材第43页的部分内容.
    圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.
    由圆周角定理,可以得到以下推论:推论1 90°的圆周角所对的弦是直径.(如图)

    (推论证明)已知:△ABC的三个顶点都在⊙O上,且∠ACB=90°.
    求证:线段AB是⊙O的直径.
    请你结合图①写出推论1的证明过程.
    (深入探究)如图②,点A,B,C,D均在半径为1的⊙O上,若∠ACB=90°,∠ACD=60°.则线段AD的长为 .
    (拓展应用)如图③,已知△ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点E是BC的中点,连结DE. 若AB=,则DE的长为 .


    -参考答案-
    一、单选题
    1、B
    【分析】
    根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.
    【详解】
    解:∵弦AB⊥CD,CD过圆心O,
    ∴AM=BM,,,
    即选项A、C、D选项说法正确,不符合题意,
    当根据已知条件得CM和DM不一定相等,
    故选B.
    【点睛】
    本题考查了垂径定理,解题的关键是掌握垂径定理.
    2、D
    【分析】
    连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.
    【详解】
    解:连接OB,OC,

    ∵∠BAC=30°,
    ∴∠BOC=60°.
    ∵OB=OC,BC=6,
    ∴△OBC是等边三角形,
    ∴OB=BC=6.
    ∴⊙O的直径等于12.
    故选:D.
    【点睛】
    本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.
    3、B
    【分析】
    根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
    【详解】
    解:连接,

    ,点O为AB中点.

    CO为⊙C的半径,
    是的切线,
    ⊙C 与AB的位置关系是相切
    故选B
    【点睛】
    本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
    4、B
    【分析】
    根据旋转可得,,得.
    【详解】
    解:,,

    将绕点逆时针旋转得到△,使点的对应点恰好落在边上,
    ,,

    故选:B.
    【点睛】
    本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.
    5、B
    【详解】
    解:A.是轴对称图形,不是中心对称图形,故不符合题意;
    B.既是轴对称图形,又是中心对称图形,故符合题意;
    C.不是轴对称图形,是中心对称图形,故不符合题意;
    D.是轴对称图形,不是中心对称图形,故不符合题意.
    故选:B.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    6、A
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;
    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    C、是中心对称图形,不是轴对称图形,故此选项不符合题意;
    D、是中心对称图形,不是轴对称图形,故此选项不符合题意.
    故选:A.
    【点睛】
    本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
    7、B
    【分析】
    连接OC.根据确定,,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出.
    【详解】
    解:如下图所示,连接OC.

    ∵,
    ∴,.
    ∴.
    ∵.
    ∴.

    ∵和分别是所对的圆周角和圆心角,
    ∴.
    故选:B.
    【点睛】
    本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.
    8、A
    【分析】
    取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.
    【详解】
    解:如图,取BC的中点G,连接MG,

    ∵旋转角为60°,
    ∴∠MBH+∠HBN=60°,
    又∵∠MBH+∠MBC=∠ABC=60°,
    ∴∠HBN=∠GBM,
    ∵CH是等边△ABC的对称轴,
    ∴HB=AB,
    ∴HB=BG,
    又∵MB旋转到BN,
    ∴BM=BN,
    在△MBG和△NBH中,

    ∴△MBG≌△NBH(SAS),
    ∴MG=NH,
    根据垂线段最短,MG⊥CH时,MG最短,即HN最短,
    此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,
    ∴MG=CG=,
    ∴HN=,
    故选A.
    【点睛】
    本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
    9、A
    【分析】
    根据轴对称图形与中心对称图形的概念进行判断.
    【详解】
    解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;
    等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;
    共2个既是轴对称图形又是中心对称图形.
    故选:A.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
    10、C
    【分析】
    由OA=OB,,求出∠AOB=130°,根据圆周角定理求出的度数.
    【详解】
    解:∵OA=OB,,
    ∴∠BAO=.
    ∴∠AOB=130°.
    ∴=∠AOB=65°.
    故选:C.
    【点睛】
    此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半.
    二、填空题
    1、##
    【分析】
    设与AC相交于点D,过点D作,垂足为点E,根据勾股定理逆定理可得为直角三角形,根据三边关系可得,根据题意及等角对等边得出,在中,利用正弦函数可得,结合图形,利用扇形面积公式及三角形面积公式求解即可得.
    【详解】
    解:设与AC相交于点D,过点D作,垂足为点E,

    ∵,,,
    ∴,
    ∴为直角三角形,
    ∴,
    ∵绕点B顺时针方向旋转45°得到,
    ∴,
    ∴,
    ∴,
    在中,,
    ∴,
    ∴,
    ∴,




    故答案为:.
    【点睛】
    题目主要考查勾股定理逆定理,旋转的性质,等角对等边的性质,正切函数,扇形面积等,理解题意,结合图形,综合运用这些知识点是解题关键.
    2、4
    【分析】
    在正方形ABCD中,BE′=DE=2,所以在直角三角形E′CE中,E′C=8,CE=4,利用勾股定理求得EE′的长即可.
    【详解】
    解:在正方形ABCD中,∠C=90°,
    由旋转得,BE′=DE=2,
    ∴E′C=8,CE=4,
    ∴在直角三角形E′CE中,
    EE′===4.
    故答案为4.
    【点睛】
    本题考查了正方形的性质、旋转的性质与勾股定理的知识,正确的利用旋转和正方形的性质得出直角三角形边长并正确的应用勾股定理是解题的关键.
    3、5
    【分析】
    直角三角形外接圆的直径是斜边的长.
    【详解】
    解:由勾股定理得:AB==10,
    ∵∠ACB=90°,
    ∴AB是⊙O的直径,
    ∴这个三角形的外接圆直径是10,
    ∴这个三角形的外接圆半径长为5,

    故答案为:5.
    【点睛】
    本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等.
    4、22020
    【分析】
    根据,,点的坐标是,得,点 的横坐标是,点 的横坐标是-,同理可得点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,依次进行下去,可得点的横坐标,进而求得的横坐标.
    【详解】
    解:∵∠OA0A1=90°,∠A1OA0=60°,点A0的坐标是(1,0),
    ∴OA0=1,
    ∴点A1 的横坐标是 1=20,
    ∴OA1=2OA0=2,
    ∵∠A2A1O=90°,∠A2OA1=60°,
    ∴OA2=2OA1=4,
    ∴点A2 的横坐标是- OA2=-2=-21,
    依次进行下去,Rt△OA2A3,Rt△OA3A4…,
    同理可得:
    点A3 的横坐标是﹣2OA2=﹣8=﹣23,
    点A4 的横坐标是﹣8=﹣23,
    点A5 的横坐标是 OA5=×2OA4=2OA3=4OA2=16=24,
    点A6 的横坐标是2OA5=2×2OA4=23OA3=64=26,
    点A7 的横坐标是64=26,

    发现规律,6次一循环,





    2021÷6=336……5
    则点A2021的横坐标与的坐标规律一致是 22020.
    故答案为:22020.
    【点睛】
    本题考查了规律型——点的坐标,解决本题的关键是理解动点的运动过程,总结规律,发现规律,点A3n在轴上,且坐标为.
    5、
    【分析】
    根据已知条件可得出,,再利用圆周角定理得出即可.
    【详解】
    解:、分别与相切于、两点,
    ,,



    故答案为:.
    【点睛】
    本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键.
    三、解答题
    1、
    (1)见解析
    (2)
    【分析】
    (1)如图,连接OC,根据等腰三角形的性质可得∠CAB=∠ACO,即可得出∠FAC=∠ACO,可得AF//OC,根据平行线的性质可得∠AFC+∠OCF=180°,根据CF⊥AF可得∠OCF=90°,即可得出CF是⊙O的切线;
    (2)利用AAS可证明△AFC≌△AEC,可得S△AFC=S△AEC,根据垂径定理可得CE=DE,可得S△BCD=2S△BCE,根据AB是直径可得∠ACB=90°,根据角的和差关系可得∠BCE=∠CAB,根据正弦的定义可得,可得BE=,AB=,进而可得AE=,根据三角形面积公式即可得答案.
    (1)
    (1)如图,连接OC,
    ∵OA=OC,
    ∴∠CAB=∠ACO,
    ∵∠FAC=∠BAC,
    ∴∠FAC=∠ACO,
    ∴AF//OC,
    ∴∠AFC+∠OCF=180°,
    ∵CF⊥AF,
    ∴∠OCF=90°,即OC⊥CF,
    ∴CF是⊙O的切线.
    (2)
    在△AFC和△AEC中,,
    ∴△AFC≌△AEC,
    ∴S△AFC=S△AEC,
    ∵AB是⊙O的直径,CD⊥AB,
    ∴CE=DE,
    ∴S△BCD=2S△BCE,
    ∵∠BCE+∠CBA=90°,∠CAB+∠CBA=90°,
    ∴∠BCE=∠CBA,
    ∵sin∠CAB=,
    ∴sin∠CAB=sin∠BCE=,
    ∴BE=,AB=,
    ∴AE=,
    ∴====.
    故答案为:
    【点睛】
    本题考查切线的判定、圆周角定理、垂径定理、全等三角形的判定与性质及三角函数的定义,经过半径的外端点,且垂直于这条半径的直线是圆的切线;直径所对的圆周角是90°;垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧;在直角三角形中,锐角的正弦是锐角的对边与斜边的比值;熟练掌握相关性质及判定定理是解题关键.
    2、
    (1)
    (2)
    (3)
    【分析】
    (1)先求得,点的坐标,进而根据即可求得的值;
    (2)过点作轴于点,证明是直角三角形,进而,根据相似的性质列出比例式进而代入点的坐标解方程即可;
    (3)接,取的中点,连接,根据题意,点在以为圆心,2为半径的圆上,则在以为圆心,为半径的圆上运动,根据点与圆的距离求最值,进而求得的解析式为,根据,设直线的解析式为,将点代入求得,进而设,根据,进而根据勾股定理列出方程解方程求解即可.
    (1)

    令,解得
    令,
    抛物线(a为常数,)与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,
    抛物线与轴的交点为





    解得
    (2)
    如图,过点作轴于点,







    是直角三角形,且





    在抛物线上,



    整理得
    解得(舍)
    在第三象限,


    (3)
    如图,连接,取的中点,连接,

    是的中位线

    根据题意点在以为圆心,2为半径的圆上,
    则在以为圆心,为半径的圆上运动,
    当三点共线,且在的延长线上时,最大,如图,




    设直线的解析式为,代入点,

    解得
    直线的解析式为

    设直线的解析式为


    解得
    则的解析式为
    设点,


    解得(舍去)



    【点睛】
    本题考查了二次函数综合运用,点与圆的距离求最值问题,相似三角形的性质与判定,正确的添加辅助线并熟练掌握以上知识是解题的关键.
    3、(1)EF=DF+BE;(2)EF=DF-BE;(3)线段EF的长为或.
    【分析】
    (1)延长FD至G,使DG=BE,连接AG,先证△ABE≌△ADG,再证△GAF≌△EAF即可;
    (2)在DC上截取DH=BE,连接AH,先证△ADH≌△ABE,再证△HAF≌EAF即可;
    (3)分两种情形分别求解即可解决问题.
    【详解】
    解:(1)结论:EF=BE+DF.
    理由:延长FD至G,使DG=BE,连接AG,如图①,

    ∵ABCD是正方形,
    ∴AB=AD,∠ABE=ADG=∠DAB=90°,
    ∴△ABE≌△ADG(AAS),
    ∴AE=AG,∠DAG=∠EAB,
    ∵∠EAF=45°,
    ∴∠DAF+∠EAB=45°,
    ∴∠DAF+∠DAG=45°,
    ∴∠GAF=∠EAF=45°,
    ∵AF=AF,
    ∴△GAF≌△EAF(AAS),
    ∴EF=GF,
    ∴GF=DF+DG=DF+BE,
    即:EF=DF+BE;
    (2)结论:EF=DF-BE.
    理由:在DC上截取DH=BE,连接AH,如图②,

    ∵AD=AB,∠ADH=∠ABE=90°,
    ∴△ADH≌△ABE(SAS),
    ∴AH=AE,∠DAH=∠EAB,
    ∵∠EAF=∠EAB+∠BAF=45°,
    ∴∠DAH+∠BAF=45°,
    ∴∠HAF=45°=∠EAF,
    ∵AF=AF,
    ∴△HAF≌EAF(SAS),
    ∴HF=EF,
    ∵DF=DH+HF,
    ∴EF=DF-BE;
    (3)①当MA经过BC的中点E时,同(1)作辅助线,如图:

    设FD=x,由(1)的结论得FG=EF=2+x,FC=4-x.
    在Rt△EFC中,(x+2)2=(4-x)2+22,
    ∴x=,
    ∴EF=x+2=.
    ②当NA经过BC的中点G时,同(2)作辅助线,

    设BE=x,由(2)的结论得EC=4+x,EF=FH,
    ∵K为BC边的中点,
    ∴CK=BC=2,
    同理可证△ABK≌FCK(SAS),
    ∴CF=AB=4,EF=FH=CF+CD-DH=8-x,
    在Rt△EFC中,由勾股定理得到:(4+x)2+42=(8-x)2,
    ∴x=,
    ∴EF=8-=.
    综上,线段EF的长为或.
    【点睛】
    本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题.
    4、(1)见解析;(2)2
    【分析】
    (1)连接OD,由与AB相切得,由HL定理证明由全等三角形的性质得,即可得证;
    (2)设的半径为,则,在中,得出关系式求出,可得出的长,在中,由正切值求出,在中,由勾股定理求出即可.
    【详解】
    (1)

    如图,连接OD,
    ∵与AB相切,
    ∴,
    在与中,

    ∴,
    ∴,
    ∴平分;
    (2)设的半径为,则,
    在中,,,
    ∴,
    解得:,
    ∴,
    在中,,即,
    在中,.
    【点睛】
    本题考查圆与直线的位置关系,全等三角形的判定与性质、三角函数以及勾股定理,掌握相关知识点的应用是解题的关键.
    5、【推论证明】见解析;【深入探究】;【拓展应用】.
    【分析】
    推论证明:根据圆周角定理求出,即可证明出线段AB是⊙O的直径;
    深入探究:连接AB,首先根据∠ACB=90°得出AB是⊙O的直径,然后求出,然后根据同弧所对的圆周角相等得到,然后根据30°角直角三角形的性质求出BD的长度,最后根据勾股定理即可求出AD的长度;
    拓展应用:连接AE,作CF⊥DE交DE于点F,首先根据等边三角形三线合一的性质求出,然后证明出A,E,C,D四点共圆,然后根据同弧或等弧所对的圆周角相等求出,,最后根据等腰直角三角形的性质和30°角直角三角形的性质,结合勾股定理求解即可.
    【详解】
    解:推论证明:∵
    ∴,
    ∴A,B,O三点共线,
    又∵点O是圆心,
    ∴AB是⊙O的直径;
    深入探究:如图所示,连接AB,

    ∵∠ACB=90°
    ∴AB是⊙O的直径

    ∵∠ACD=60°



    ∴在中,
    ∴;
    拓展应用:如图所示,连接AE,作CF⊥DE交DE于点F,

    ∵△ABC是等边三角形,点E是BC的中点
    ∴,
    又∵以AC为底边在三角形ABC外作等腰直角三角形ACD
    ∴,
    ∴点A,E,C,D四点都在以AC为直径的圆上,


    ∵CF⊥DE
    ∴是等腰直角三角形
    ∴,


    ∴,解得:



    ∴在中,

    ∴.
    【点睛】
    此题考查了圆周角定理,90°的圆周角所对的弦是直径,相等的圆周角所对的弧相等,等边三角形和等腰直角三角形的性质等知识,解题的关键是熟练掌握以上知识点和性质定理.

    相关试卷

    沪科版九年级下册第24章 圆综合与测试随堂练习题:

    这是一份沪科版九年级下册第24章 圆综合与测试随堂练习题,共31页。试卷主要包含了下列判断正确的个数有,点P关于原点对称的点的坐标是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试课后测评:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后测评,共35页。

    沪科版九年级下册第24章 圆综合与测试课时训练:

    这是一份沪科版九年级下册第24章 圆综合与测试课时训练,共42页。试卷主要包含了如图,点A等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map