


九年级下册第24章 圆综合与测试课时训练
展开
这是一份九年级下册第24章 圆综合与测试课时训练,共32页。
沪科版九年级数学下册第24章圆同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180°,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是( )
A.它们的开口方向相同 B.它们的对称轴相同
C.它们的变化情況相同 D.它们的顶点坐标相同
2、下列图形中,是中心对称图形,但不是轴对称图形的是( )
A. B. C. D.
3、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为( )
A.4 B.6 C.8 D.10
4、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.
A.3π B.6π C.12π D.18π
5、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )
A.相交 B.相切
C.相离 D.不确定
6、如图,四边形内接于,如果它的一个外角,那么的度数为( )
A. B. C. D.
7、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于( )
A.10 B.6 C.6 D.12
8、下列图形中,是中心对称图形也是轴对称图形的是( )
A. B. C. D.
9、如图,在Rt△ABC中,,,点D、E分别是AB、AC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为;③BP存在最小值为;④点P运动的路径长为.其中,正确的( )
A.①②③ B.①②④ C.①③④ D.②③④
10、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是( )
A..等腰三角形 B.等边三角形
C..直角三角形 D..等腰直角三角形
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在矩形中,,,F为中点,P是线段上一点,设,连结并将它绕点P顺时针旋转90°得到线段,连结、,则在点P从点B向点C的运动过程中,有下面四个结论:①当时,;②点E到边的距离为m;③直线一定经过点;④的最小值为.其中结论正确的是______.(填序号即可)
2、如图,以面积为20cm2的Rt△ABC的斜边AB为直径作⊙O,∠ACB的平分线交⊙O于点D,若,则AC+BC=_____.
3、如图,在ABC中,∠C=90°,AB=10,在同一平面内,点O到点A,B,C的距离均等于a(a为常数).那么常数a的值等于________.
4、如图,P是正方形ABCD内一点,将绕点B顺时针方向旋转,能与重合,若,则______.
5、如图,在Rt△ABC,∠B=90°,AB=BC=1,将△ABC绕着点C逆时针旋转60°,得到△MNC,那么BM=______________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,AB为⊙O的弦,OC⊥AB于点M,交⊙O于点C.若⊙O的半径为10,OM:MC=3:2,求AB的长.
2、综合与实践
“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具——三分角器.图1是它的示意图,其中与半圆的直径在同一直线上,且的长度与半圆的半径相等;与垂直于点,足够长.
使用方法如图2所示,若要把三等分,只需适当放置三分角器,使经过的顶点,点落在边上,半圆与另一边恰好相切,切点为,则,就把三等分了.
为了说明这一方法的正确性,需要对其进行证明.
独立思考:(1)如下给出了不完整的“已知”和“求证”,请补充完整.
已知:如图2,点,,,在同一直线上,,垂足为点,________,切半圆于.求证:________________.
探究解决:(2)请完成证明过程.
应用实践:(3)若半圆的直径为,,求的长度.
3、在平面直角坐标系中,的三个顶点坐标分别为.(每个方格的边长均为1个单位长度)
(1)画出关于原点对称的图形,并写出点的坐标;
(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;
(3)写出经过怎样的旋转可直接得到.(请将20题(1)(2)小问的图都作在所给图中)
4、元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy中,OA经过坐标原点O,并与两坐标轴分别交于B、C两点,点B的坐标为,点D在上,且,求OA的半径和圆心A的坐标.
元元的做法如下,请你帮忙补全解题过程:
解:如图2,连接BC.作AELOB于E、AF⊥OC于F.
∴、(依据是 ① )
∵,
∴(依据是 ② ).
∵,.
∴BC是的直径(依据是 ③ ).
∴
∵,
∴A的坐标为( ④ )的半径为 ⑤
5、如图,在等边三角形ABC中,点P为△ABC内一点,连接AP,BP,CP,将线段AP绕点A 顺时针旋转60°得到 ,连接 .
(1)用等式表示 与CP的数量关系,并证明;
(2)当∠BPC=120°时,
①直接写出 的度数为 ;
②若M为BC的中点,连接PM,请用等式表示PM与AP的数量关系,并证明.
-参考答案-
一、单选题
1、B
【分析】
根据旋转的性质及抛物线的性质即可确定答案.
【详解】
抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180°后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,-2),所以在四个选项中,只有B选项符合题意.
故选:B
【点睛】
本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键.
2、B
【分析】
根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.
【详解】
解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;
B、是中心对称图形但不是轴对称图形,故符合题意;
C、既不是轴对称图形也不是中心对称图形,故不符合题意;
D、是轴对称图形但不是中心对称图形,故不符合题意;
故选B.
【点睛】
本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.
3、A
【分析】
根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.
【详解】
解:∵AB是⊙O的直径,
∴ ,
∵∠BAC=30°,BC=2,
∴.
故选:A
【点睛】
本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.
4、B
【分析】
利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
【详解】
解:它的侧面展开图的面积=×2×2×3=6(cm2).
故选:B.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
5、B
【分析】
根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
【详解】
解:连接,
,点O为AB中点.
CO为⊙C的半径,
是的切线,
⊙C 与AB的位置关系是相切
故选B
【点睛】
本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
6、D
【分析】
由平角的性质得出∠BCD=116°,再由内接四边形对角互补得出∠A=64°,再由圆周角定理即可求得∠BOD=2∠A=128°.
【详解】
∵
∴
∵四边形内接于
∴
又∵
∴.
故选:D.
【点睛】
本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.
7、D
【分析】
连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.
【详解】
解:连接OB,OC,
∵∠BAC=30°,
∴∠BOC=60°.
∵OB=OC,BC=6,
∴△OBC是等边三角形,
∴OB=BC=6.
∴⊙O的直径等于12.
故选:D.
【点睛】
本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.
8、C
【分析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
【详解】
解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;
B、是轴对称图形,不是中心对称图形,故B选项不符合题意;
C、既是轴对称图形,又是中心对称图形,故C选项符合题意;
D、是轴对称图形,但不是中心对称图形,故D选项不符合题意.
故选:C.
【点睛】
本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
9、B
【分析】
根据,,点D、E分别是AB、AC的中点.得出∠DAE=90°,AD=AE=,可证∠DAB=∠EAC,再证△DAB≌△EAC(SAS),可判断①△AEC≌△ADB正确;作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,根据△AEC≌△ADB,得出∠DBA=∠ECA,可证∠P=∠BAC=90°,CP为⊙A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判断②CP存在最大值为正确;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判断③BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,可求∠ACE=30°,根据圆周角定理得出∠AOP=2∠ACE=60°,当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,可得∠ABD=30°根据圆周角定理得出∠AOP′=2∠ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,L可判断④点P运动的路径长为正确即可.
【详解】
解:∵,,点D、E分别是AB、AC的中点.
∴∠DAE=90°,AD=AE=,
∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,
∴∠DAB=∠EAC,
在△DAB和△EAC中,
,
∴△DAB≌△EAC(SAS),
故①△AEC≌△ADB正确;
作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,
∵△AEC≌△ADB,
∴∠DBA=∠ECA,
∴∠PBA+∠P=∠ECP+∠BAC,
∴∠P=∠BAC=90°,
∵CP为⊙A的切线,
∴AE⊥CP,
∴∠DPE=∠PEA=∠DAE=90°,
∴四边形DAEP为矩形,
∵AD=AE,
∴四边形DAEP为正方形,
∴PE=AE=3,
在Rt△AEC中,CE=,
∴CP最大=PE+EC=3+,
故②CP存在最大值为正确;
∵△AEC≌△ADB,
∴BD=CE=,
在Rt△BPC中,BP最小=,
BP最短=BD-PD=-3,
故③BP存在最小值为不正确;
取BC中点为O,连结AO,OP,
∵AB=AC=6,∠BAC=90°,
∴BP=CO=AO=,
当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,
∴∠ACE=30°,
∴∠AOP=2∠ACE=60°,
当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,
∴∠ABD=30°,
∴∠AOP′=2∠ABD=60°,
∴点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,
∵∠POP=∠POA+∠AOP′=60°+60°=120°,
∴L.
故④点P运动的路径长为正确;
正确的是①②④.
故选B.
【点睛】
本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键.
10、D
【分析】
根据旋转的性质推出相等的边CE=CF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.
【详解】
解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,
∴∠ECF=90°,CE=CF,
∴△CEF是等腰直角三角形,
故选:D.
【点睛】
本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.
二、填空题
1、②③④
【分析】
①当在点的右边时,得出即可判断;
②证明出即可判断;
③根据为等腰直角三角形,得出都是等腰直角三角形,得到即可判断;
④当时,有最小值,计算即可.
【详解】
解:,
为等腰直角三角形,
,
当在点的左边时,
,
当在点的右边时,
,
故①错误;
过点作,
在和中,
根据旋转的性质得:,
,
,
,
,
故②正确;
由①中得知为等腰直角三角形,
,
也是等腰直角三角形,
过点,
不管P在上怎么运动,
得到都是等腰直角三角形,
,
即直线一定经过点,
故③正确;
是等腰直角三角形,
当时,有最小值,
,
为等腰直角三角形,
,
,
由勾股定理:
,
,
故④正确;
故答案是:②③④.
【点睛】
本题是四边形综合题,考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理,等腰直角三角形,解题的关键是灵活运用这些性质进行推理.
2、##
【分析】
连接,延长交于点,连接,先根据圆周角定理和圆的性质可得,再根据特殊角的三角函数值可得,从而可得,作,交于点,从而可得,然后在中,利用直角三角形的性质和勾股定理可得,设,从而可得,利用直角三角形的面积公式可求出的值,由此即可得.
【详解】
解:如图,连接,延长交于点,连接,
都是的直径,
,
,
,
在中,,
,
平分,且,
,
,
,
,
如图,作,交于点,
,
在中,,
,
设,则,
,
,
解得或(不符题意,舍去),
则,
故答案为:.
【点睛】
本题考查了特殊角的三角函数值、圆周角定理、含角的直角三角形的性质等知识点,通过作辅助线,构造直角三角形和等腰三角形是解题关键.
3、5
【分析】
直接利用直角三角形斜边上的中线等于斜边的一半即可求解.
【详解】
解:根据直角三角形斜边上的中线等于斜边的一半,
即可知道点到点A,B,C的距离相等,
如下图:
,
,
故答案是:5.
【点睛】
本题考查了直角三角形的外接圆的外心,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半即可求解.
4、
【分析】
根据旋转角相等可得,进而勾股定理求解即可
【详解】
解:四边形是正方形
将绕点B顺时针方向旋转,能与重合,
,
故答案为:
【点睛】
本题考查了旋转的性质,勾股定理,求得旋转角相等且等于90°是解题的关键.
5、
【分析】
设BN与AC交于D,过M作MF⊥BA于F,过M作ME⊥BC于E,连接AM,先证明△EMC≌△FMA得ME=MF,从而可得∠CBD=45°,∠CDB=180°-∠BCA-∠CBD=90°,再在Rt△BCD、Rt△CDM中,分别求出BD和DM,即可得到答案.
【详解】
解:设BN与AC交于D,过M作MF⊥BA于F,过M作ME⊥BC于E,连接AM,如图:
∵△ABC绕着点C逆时针旋转60°,
∴∠ACM=60°,CA=CM,
∴△ACM是等边三角形,
∴CM=AM①,∠ACM=∠MAC=60°,
∵∠B=90°,AB=BC=1,
∴∠BCA=∠CAB=45°,AC==CM,
∴∠BCM=∠BCA+∠ACM=105°,∠BAM=∠CAB+∠MAC=105°,
∴∠ECM=∠MAF=75°②,
∵MF⊥BA,ME⊥BC,
∴∠E=∠F=90°③,
由①②③得△EMC≌△FMA,
∴ME=MF,
而MF⊥BA,ME⊥BC,
∴BM平分∠EBF,
∴∠CBD=45°,
∴∠CDB=180°-∠BCA-∠CBD=90°,
Rt△BCD中,BD=BC=,
Rt△CDM中,DM=CM =,
∴BM=BD+DM=,
故答案为:.
【点睛】
本题考查等腰三角形性质、等边三角形的性质及判定,解题的关键是证明∠CDB=90°.
三、解答题
1、
【分析】
连接OA,根据⊙O的半径为10,OM:MC=3:2可求出OM的长,由勾股定理求出AM的长,再由垂径定理求出AB的长即可.
【详解】
解:如图,连接OA.
∵OM:MC=3:2,OC=10,
∴OM==6.
∵OC⊥AB,
∴∠OMA=90°,AB=2AM.
在Rt△AOM中,AO=10,OM=6,
∴AM=8.
∴AB=2AM =16.
【点睛】
本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键.
2、(1),,将三等分;(2)见解析;(3)
【分析】
(1)根据题意即可得;
(2)先证明与全等,然后根据全等的性质可得,再由圆的切线的性质可得,可得三个角相等,即可证明结论;
(3)连,延长与相交于点,由(2)结论可得,再由切线的性质,,然后利用勾股定理及线段间的数量关系可得,最后利用相似三角形的判定和性质求解即可得.
【详解】
解:(1),,将三等分,
故答案为:;,将三等分,
(2)证明:在与中,
,
,
.
,
是的切线.
、都是的切线,
,
,
,将三等分.
(3)如图,连,延长与相交于点,
由(2),知.
是的切线,
,
,.
∵半径,
∴由勾股定理得,在中,
,,
.
∵,
,
,
,即,
.
【点睛】
题目主要考查全等三角形的判定和性质,相似三角形的判定和性质,圆的切线的性质,勾股定理等,理解题意,结合图形综合运用这些知识点是解题关键.
3、
(1)见解析,;
(2)见解析,
(3)绕点O顺时针时针旋转
【分析】
(1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;
(2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;
(3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解.
(1)
解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:
(2)
解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:
(3)
解:根据题意得:绕点O顺时针时针旋转后可直接得到.
【点睛】
本题主要考查了图形的变换——画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键.
4、垂径定理,圆周角定理,圆周角定理,(1,),2
【分析】
根据垂径定理,圆周角定理依次分析解答.
【详解】
解:如图2,连接BC.作AE⊥OB于E、AF⊥OC于F.
∴、(依据是垂径定理)
∵,
∴(依据是圆周角定理).
∵,.
∴BC是的直径(依据是圆周角定理).
∴,
∵,
∴A的坐标为(1,),的半径为2,
故答案为:垂径定理,圆周角定理,圆周角定理,(1,),2.
【点睛】
此题考查了圆的知识,垂径定理、圆周角定理,熟记各定理知识并综合应用是解题的关键.
5、(1),理由见解析;(2)①60°;②PM=,见解析
【分析】
(1)根据等边三角形的性质,可得AB=AC,∠BAC=60°,再由由旋转可知:从而得到,可证得,即可求解 ;
(2)①由∠BPC=120°,可得∠PBC+∠PCB=60°.根据等边三角形的性质,可得∠BAC=60°,从而得到∠ABC+∠ACB=120°,进而得到∠ABP+∠ACP=60°.再由,可得 ,即可求解;
②延长PM到N,使得NM=PM,连接BN.可先证得△PCM≌△NBM.从而得到CP=BN,∠PCM=∠NBM.进而得到 .根据①可得,可证得,从而得到 .再由 为等边三角形,可得 .从而得到 ,即可求解.
【详解】
解:(1) .理由如下:
在等边三角形ABC中,AB=AC,∠BAC=60°,
由旋转可知:
∴
即
在和△ACP中
∴ .
∴ .
(2)①∵∠BPC=120°,
∴∠PBC+∠PCB=60°.
∵在等边三角形ABC中,∠BAC=60°,
∴∠ABC+∠ACB=120°,
∴∠ABP+∠ACP=60°.
∵ .
∴ ,
∴∠ABP+∠ABP'=60°.
即 ;
②PM= .理由如下:
如图,延长PM到N,使得NM=PM,连接BN.
∵M为BC的中点,
∴BM=CM.
在△PCM和△NBM中
∴△PCM≌△NBM(SAS).
∴CP=BN,∠PCM=∠NBM.
∴ .
∵∠BPC=120°,
∴∠PBC+∠PCB=60°.
∴∠PBC+∠NBM=60°.
即∠NBP=60°.
∵∠ABC+∠ACB=120°,
∴∠ABP+∠ACP=60°.
∴∠ABP+∠ABP'=60°.
即 .
∴ .
在△PNB和 中
∴ (SAS).
∴ .
∵
∴ 为等边三角形,
∴ .
∴ ,
∴PM= .
【点睛】
本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键.
相关试卷
这是一份沪科版九年级下册第24章 圆综合与测试课后练习题,共30页。试卷主要包含了下列判断正确的个数有等内容,欢迎下载使用。
这是一份2020-2021学年第24章 圆综合与测试课后测评,共36页。
这是一份九年级下册第24章 圆综合与测试同步练习题,共38页。试卷主要包含了如图,点A等内容,欢迎下载使用。
