搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析沪科版九年级数学下册第24章圆章节练习试卷

    2022年必考点解析沪科版九年级数学下册第24章圆章节练习试卷第1页
    2022年必考点解析沪科版九年级数学下册第24章圆章节练习试卷第2页
    2022年必考点解析沪科版九年级数学下册第24章圆章节练习试卷第3页
    还剩24页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第24章 圆综合与测试复习练习题

    展开

    这是一份2020-2021学年第24章 圆综合与测试复习练习题,共27页。
    沪科版九年级数学下册第24章圆章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、图2是由图1经过某一种图形的运动得到的,这种图形的运动是(    A.平移 B.翻折 C.旋转 D.以上三种都不对2、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是(    A.50° B.60° C.40° D.30°3、如图,直线x轴于点A,交y轴于点B,点Px轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是(  )A. B.C. D.(﹣2,0)或(﹣5,0)4、如图,在中,.将绕点按逆时针方向旋转后得到,则图中阴影部分面积为(    A. B. C. D.5、如图,AB的直径,弦CDAB于点P,则CD的长为(    A. B. C. D.86、下列各点中,关于原点对称的两个点是(  )A.(﹣5,0)与(0,5) B.(0,2)与(2,0)C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)7、如图,AB的直径,的弦DC的延长线与AB的延长线相交于点P于点E,则阴影部分的面积为(    A. B. C. D.8、下列图形中,既是轴对称图形,又是中心对称图形的是(  )A. B. C. D.9、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是(     A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<210、如图,在RtABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DEAC边于点F,则图中阴影部分的面积为(    A.3 B.1 C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x2﹣5x+6=0的根,则直线l与圆O的的位置关系是______.2、如图,AB是半圆O的直径,点D在半圆O上,C是弧BD上的一个动点,连接AC,过D点作H.连接BH,则在点C移动的过程中,线段BH的最小值是______.3、如图,在⊙O中,∠BOC=80°,则∠A=___________°.4、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).5、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______. 三、解答题(5小题,每小题10分,共计50分)1、如图,将一个直径AB等于12厘米的半圆绕着点A逆时针旋转60°后,点B落到了点C的位置,半圆扫过部分的图形如阴影部分所示.(1)阴影部分的周长;(2)阴影部分的面积.(结果保留π2、如图,在RtABC中,∠C=90°,将△ABC绕着点B逆时针旋转得到△FBE,点CA的对应点分别为EF.点E落在BA上,连接AF(1)若∠BAC=40°,求∠BAF的度数;(2)若AC=8,BC=6,求AF的长.3、已知:RtABC中,∠ACB=90°,∠ABC=60°,将△ABC绕点B按顺时针方向旋转.(1)当C转到AB边上点C′位置时,A转到A′,(如图1所示)直线CC′和AA′相交于点D,试判断线段AD和线段AD之间的数量关系,并证明你的结论.(2)将RtABC继续旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)将RtABC旅转至AC′、A′三点在一条直线上时,请直接写出此时旋转角α的度数.4、如图,在中,D是边BC上一点,作射线AD,满足,在射线AD取一点E,且.将线段AE绕点A逆时针旋转90°,得到线段AF,连接BEFE,连接FC并延长交BE于点G(1)依题意补全图形;(2)求的度数;(3)连接GA,用等式表示线段GAGBGC之间的数量关系,并证明.5、如图,已知弓形的长,弓高,(,并经过圆心O).(1)请利用尺规作图的方法找到圆心O(2)求弓形所在的半径的长. -参考答案-一、单选题1、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C.【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.2、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将△OAB绕点O逆时针旋转80°得到△OCD A的度数为110°,∠D的度数为40°, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.3、C【分析】由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PDABPD=1,根据相似三角形的性质即可得到结论.【详解】解:∵直线x轴于点A,交y轴于点B∴令x=0,得y=-3,令y=0,得x=-4,A(-4,0),B(0,-3),OA=4,OB=3,AB=5,设⊙P与直线AB相切于D连接PDPDABPD=1,∵∠ADP=∠AOB=90°,∠PAD=∠BAO∴△APD∽△ABOAP= OP= OP= PP故选:C.【点睛】本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.4、B【分析】阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积.【详解】解:由图可知:阴影部分的面积=扇形扇形由旋转性质可知:中,有勾股定理可知:阴影部分的面积=扇形扇形 故选:B.【点睛】本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键.5、A【分析】过点于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.【详解】解:如图,过点于点,连接 AB的直径,中,故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.6、D【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;故选:D【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.7、B【分析】由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案.【详解】解:根据题意,如图:AB的直径,OD是半径,AE=CE∴阴影CED的面积等于AED的面积,故选:B【点睛】本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.8、C【详解】解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;选项B不是轴对称图形,是中心对称图形,故B不符合题意;选项C既是轴对称图形,也是中心对称图形,故C符合题意;选项D是轴对称图形,不是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.9、A【分析】点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.【详解】解:∵⊙O的半径为4,点P 在⊙O外部,OP需要满足的条件是OP>4,故选:A【点睛】此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.10、D【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.【详解】解:如图,设相交于点旋转,是等边三角形,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.二、填空题1、相切或相交【详解】首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若dr,则直线与圆相交;若dr,则直线于圆相切;若dr,则直线与圆相离,从而得出答案.【分析】解:∵x2﹣5x+6=0,x﹣2)(x﹣3)=0,解得:x1=2,x2=3,∵圆的半径是方程x2﹣5x+6=0的根,即圆的半径为2或3,∴当半径为2时,直线l与圆O的的位置关系是相切,当半径为3时,直线l与圆O的的位置关系是相交,综上所述,直线l与圆O的的位置关系是相切或相交.故答案为:相切或相交.【点睛】本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定.2、##【分析】连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当三点共线时,最小;求出,在中,,所以,即为所求.【详解】解:连接,取的中点,连接点在以为圆心,为半径的圆上,三点共线时,最小,是直径,中,故答案为:【点睛】本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹.3、40°度【分析】直接根据圆周角定理即可得出结论.【详解】解:是同弧所对的圆心角与圆周角,故答案为:【点睛】本题考查的是圆周角定理,解题的关键是熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4、20【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD‘=70°,然后利用互余计算出∠DAD′,从而得到α的值.【详解】∵矩形ABCD绕点A顺时针旋转到矩形ABCD′的位置,∴∠ADC=∠D=90°,∠DAD′=α∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,α=20°.故答案为20.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.5、6【分析】如图,连接OAOBOCODOEOF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.【详解】解:如图,连接OAOBOCODOEOF∵正六边形ABCDEFABBCCDDEEFFA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,的周长为的半径为正六边形的边长是6;【点睛】本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.三、解答题1、(1)16π(2)24π【分析】(1)由阴影部分的周长=两个半圆弧的长度+弧BC的长,利用弧长公式可求解;(2)由面积的和差关系可求解.(1)解:阴影部分的周长=2××2π×6+=16π;(2)解:∵阴影部分的面积=S半圆+S扇形BACS半圆S扇形BAC∴阴影部分的面积==24π.答:阴影部分的周长为16π,阴影部分的面积为24π.【点睛】本题考查了扇形的弧长公式和面积公式,如果扇形的圆心角是n°,扇形的半径为r,则扇形的弧长l的计算公式为:,扇形的面积公式:2、(1)65°(2)【分析】(1)根据三角形的内角和定理得到∠ABC=50°,根据旋转的性质得到∠EBF=∠ABC=50°,AB=BF,根据三角形的内角和定理即可得到结论;(2)根据勾股定理得到AB=10,根据旋转的性质得到BE=BC=6,EF=AC=8,根据勾股定理即可得到结论.【小题1】解:在RtABC中,∠C=90°,∠BAC=40°,∴∠ABC=50°,∵将△ABC绕着点B逆时针旋转得到△FBE∴∠EBF=∠ABC=50°,AB=BF∴∠BAF=∠BFA=(180°-50°)=65°;【小题2】∵∠C=90°,AC=8,BC=6,AB=10,∵将△ABC绕着点B逆时针旋转得到△FBEBE=BC=6,EF=AC=8,AE=AB-BE=10-6=4,AF=【点睛】本题考查了旋转的性质,勾股定理,熟练掌握旋转的性质是解题的关键.3、(1),证明见解析(2)成立,证明见解析(3)【分析】(1)设,先根据直角三角形的性质可得,再根据旋转的性质可得,然后根据等边三角形的判定与性质可得都是等边三角形,从而可得,由此即可得出结论;(2)在上截取,连接,先根据旋转的性质可得,从而可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,然后根据三角形的外角性质可得,最后根据等腰三角形的判定可得,由此即可得出结论;(3)如图(见解析),先根据旋转的性质可得,再根据直角三角形全等的判定定理证出,然后根据全等三角形的性质可得,最后根据旋转角即可得.(1)解:,证明如下:中,由旋转的性质得:都是等边三角形,是等边三角形,(2)解:成立,证明如下:如图,在上截取,连接由旋转的性质得:中,(3)解:如图,当点三点在一条直线上时,由旋转的性质得:中,则旋转角【点睛】本题考查了旋转的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.4、(1)见解析;(2)(3)【分析】(1)根据题意补全图形即可;(2)根据旋转的性质可得,进而证明,可得,根据角度的转换可得,进而根据三角形的外角性质即可证明(3)过点,证明,进而根据勾股定理以及线段的转换即可得到(1)如图,(2)将线段AE绕点A逆时针旋转90°,得到线段AF,,(3)证明如下,如图,过点,【点睛】本题考查了旋转的性质,三角形全等的性质与判定,勾股定理,等腰三角形的性质,掌握旋转的性质是解题的关键.5、(1)见解析(2)10【分析】(1)作BC的垂直平分线,与直线CD的交点即为圆心;(2)连接OA,根据勾股定理列出方程即可求解.(1)解:如图所示,点O即是圆心;(2)解:连接OA,并经过圆心O解得,答:半径为10.【点睛】本题考查了垂径定理和确定圆心,解题关键是熟练作图确定圆心,利用垂径定理和勾股定理求半径. 

    相关试卷

    沪科版九年级下册第24章 圆综合与测试同步测试题:

    这是一份沪科版九年级下册第24章 圆综合与测试同步测试题,共29页。

    初中数学沪科版九年级下册第24章 圆综合与测试习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试习题,共32页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试巩固练习:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试巩固练习,共26页。试卷主要包含了下列说法正确的个数有,下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map