


初中数学沪科版九年级下册第24章 圆综合与测试课时训练
展开
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时训练,共27页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB 为⊙O 的直径,弦 CDAB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为( )A.3 B.2 C.1 D.2、如图,A,B,C是正方形网格中的三个格点,则是( )A.优弧 B.劣弧 C.半圆 D.无法判断3、下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.4、如图,在Rt中,.以点为圆心,长为半径的圆交于点,则的长是( )A.1 B. C. D.25、下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.6、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是( )A. B. C. D.7、如图,是的直径,、是上的两点,若,则( )A.15° B.20° C.25° D.30°8、如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8.把△ABC绕点A逆时针方向旋转到△AB'C',点B'恰好落在AC边上,则CC'=( )A.10 B.2 C.2 D.49、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )A.3 B.4 C.5 D.610、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是( )A..等腰三角形 B.等边三角形C..直角三角形 D..等腰直角三角形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系内,∠OA0A1=90°,∠A1OA0=60°,以OA1为直角边向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法进行下去,得到 Rt△OA2A3,Rt△OA3A4…,若点A0的坐标是(1,0),则点A2021的横坐标是___________.2、如图,在中,,,.绕点B顺时针方向旋转45°得到,点A经过的路径为弧,点C经过的路径为弧,则图中阴影部分的面积为______.(结果保留)3、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________.4、如图,在平面直角坐标系中,点N是直线上动点,M是上动点,若点C的坐标为,且与y轴相切,则长度的最小值为____________.5、如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上异于A,B的一点,连接AC,BC.若∠P=58°,则∠ACB的大小是___________.三、解答题(5小题,每小题10分,共计50分)1、如图,在直角坐标系中,将△ABC绕点A顺时针旋转90°.(1)画出旋转后的△AB1C1,并写出B1、C1的坐标;(2)求线段AB在旋转过程中扫过的面积.2、如图,已知AB是⊙O的直径,⊙O过BC的中点D,且.(1)求证:DE是⊙O的切线;(2)若,,求的半径.3、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题.(1)图1中的“弦图”的四个直角三角形组成的图形是 对称图形(填“轴”或“中心”).(2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:①每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影;②图2中所设计的图案(不含方格纸)必须是轴对称图形而不是中心对称图形;图3中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形.4、在等边中,将线段AB绕点A顺时针旋转得到线段AD.(1)若线段DA的延长线与线段BC相交于点E(不与点B,C重合),写出满足条件的α的取值范围;(2)在(1)的条件下连接BD,交CA的延长线于点F.①依题意补全图形;②用等式表示线段AE,AF,CE之间的数量关系,并证明.5、在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于r(r为常数),到点O的距离等于r的所有点组成图形G,ABC的平分线交图形G于点D,连接AD,CD.求证:AD=CD. -参考答案-一、单选题1、B【分析】连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.【详解】解:连接OC,如图∵AB 为⊙O 的直径,CDAB,垂足为点 E,CD=8,∴,∵,∴,∴;故选:B.【点睛】本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出.2、B【分析】根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.【详解】解;如图,分别连接AB、AC、BC,取任意两条线段的中垂线相交,交点就是圆心.故选:B.【点睛】本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.3、D【详解】解:.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;.不是轴对称图形,是中心对称图形,故本选项不符合题意;.是轴对称图形,不是中心对称图形,故本选项不符合题意;.既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.4、B【分析】利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CE⊥AB于E,利用,求出BE,根据垂径定理求出BD即可得到答案.【详解】解: 在Rt中,,∴BC=3,,连接CD,过点C作CE⊥AB于E,∵,∴, 解得,∵CB=CD,CE⊥AB,∴,∴,故选:B.【点睛】此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.5、B【详解】解:A.是轴对称图形,不是中心对称图形,故不符合题意;B.既是轴对称图形,又是中心对称图形,故符合题意;C.不是轴对称图形,是中心对称图形,故不符合题意;D.是轴对称图形,不是中心对称图形,故不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、C【分析】如图,过点C作CT⊥AB于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,解直角三角形求出AB,求出CT的最大值,可得结论.【详解】解:如图,过点C作 CT⊥AB 于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,由题意可得AB垂直平分线段OK,∴AO=AK,OH=HK=3,∵OA=OK,∴OA=OK=AK,∴∠OAK=∠AOK=60°,∴AH=OA×sin60°=6×=3,∵OH⊥AB,∴AH=BH,∴AB=2AH=6,∵OC+OH⩾CT,∴CT⩽6+3=9,∴CT的最大值为9,∴△ABC的面积的最大值为=27,故选:C.【点睛】本题考查垂径定理、三角函数、三角形的面积、垂线段最短等知识,解题的关键是求出CT的最大值,属于中考常考题型.7、C【分析】根据圆周角定理得到∠BDC的度数,再根据直径所对圆周角是直角,即可得到结论.【详解】解:∵∠BOC=130°,∴∠BDC=∠BOC=65°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=90°-65°=25°,故选:C.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.8、D【分析】首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB',BC= B'C',从而求出B'C,即可在Rt△B'C'C中利用勾股定理求解.【详解】解:∵在Rt△ABC中,AB=6,BC=8,∴,由旋转性质可知,AB= AB'=6,BC= B'C'=8,∴B'C=10-6=4,在Rt△B'C'C中,,故选:D.【点睛】本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键.9、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.【详解】由旋转的性质得:,,是等边三角形,,,.故选:A.【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.10、D【分析】根据旋转的性质推出相等的边CE=CF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.【详解】解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故选:D.【点睛】本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.二、填空题1、22020【分析】根据,,点的坐标是,得,点 的横坐标是,点 的横坐标是-,同理可得点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,依次进行下去,可得点的横坐标,进而求得的横坐标.【详解】解:∵∠OA0A1=90°,∠A1OA0=60°,点A0的坐标是(1,0),∴OA0=1,∴点A1 的横坐标是 1=20,∴OA1=2OA0=2,∵∠A2A1O=90°,∠A2OA1=60°,∴OA2=2OA1=4,∴点A2 的横坐标是- OA2=-2=-21, 依次进行下去,Rt△OA2A3,Rt△OA3A4…,同理可得:点A3 的横坐标是﹣2OA2=﹣8=﹣23,点A4 的横坐标是﹣8=﹣23,点A5 的横坐标是 OA5=×2OA4=2OA3=4OA2=16=24,点A6 的横坐标是2OA5=2×2OA4=23OA3=64=26,点A7 的横坐标是64=26,…发现规律,6次一循环,即,,2021÷6=336……5则点A2021的横坐标与的坐标规律一致是 22020.故答案为:22020.【点睛】本题考查了规律型——点的坐标,解决本题的关键是理解动点的运动过程,总结规律,发现规律,点A3n在轴上,且坐标为.2、##【分析】设与AC相交于点D,过点D作,垂足为点E,根据勾股定理逆定理可得为直角三角形,根据三边关系可得,根据题意及等角对等边得出,在中,利用正弦函数可得,结合图形,利用扇形面积公式及三角形面积公式求解即可得.【详解】解:设与AC相交于点D,过点D作,垂足为点E,∵,,,∴,∴为直角三角形,∴,∵绕点B顺时针方向旋转45°得到,∴,∴,∴,在中,,∴,∴,∴,,,,,故答案为:.【点睛】题目主要考查勾股定理逆定理,旋转的性质,等角对等边的性质,正切函数,扇形面积等,理解题意,结合图形,综合运用这些知识点是解题关键.3、 4 【分析】设一直角边长为x,另一直角边长为(6-x)根据勾股定理,解一元二次方程求出,根据这个直角三角形的斜边长为外接圆的直径,可求外接圆的半径为cm,利用三角形面积公式求即可.【详解】解:设一直角边长为x,另一直角边长为(6-x),∵三角形是直角三角形,∴根据勾股定理,整理得:,解得,这个直角三角形的斜边长为外接圆的直径,∴外接圆的半径为cm,三角形面积为.故答案为;.【点睛】本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.4、-2【分析】由图可知,当CN⊥AB且C、M、N三点共线时,长度最小,利用勾股定理求出CN的长,故可求解.【详解】由图可知,当CN⊥AB且C、M、N三点共线时,长度最小∵直线AB的解析式为当x=0时,y=5,当y=0时,x=5∴B(0,5),A(5,0)∴AO=BO,△AOB是等腰直角三角形∴∠BAO=90°当CN⊥AB时,则△ACN是等腰直角三角形∴CN=AN∵C∴AC=7∵AC2=CN2+AN2=2CN2∴CN=当 C、M、N三点共线时,长度最小即MN=CN-CM=-2故答案为:-2.【点睛】此题主要考查圆与几何综合,解题的关键是根据题意找到符合题意的位置,利用等腰直角三角形的性质求解.5、或【分析】如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接 (即)分别在优弧与劣弧上, PM,PN分别与⊙O相切于A,B两点, 故答案为:或【点睛】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.三、解答题1、(1)作图见解析,、;(2)【分析】(1)将绕点A顺时针旋转90°得,根据点A、B、C坐标,即可确定出点、的坐标;(2)根据勾股定理求出AB的长,由扇形面积公式即可得出答案.【详解】(1)将绕点A顺时针旋转90°得如图所示:∴、;(2)由图可知:,∴线段AB在旋转过程中扫过的面积为.【点睛】本题考查作旋转图形以及扇形的面积公式,掌握旋转的性质及扇形的面积公式是解题的关键.2、(1)证明见解析;(2).【分析】(1)连接,只要证明即可.此题可运用三角形的中位线定理证,因为,所以.(2)根据直角三角形中角所对的直角边等于斜边的一半及勾股定理可分别求出的长和、的长,即可根据中位线性质求出的长,即的半径长.【详解】(1)证明:连接.因为是的中点,是的中点,,.,.,是圆的半径,是的切线.(2)如图,,,,,,且,,,且,∴,,,∴ ,的半径长为.【点睛】本题考查了切线的判定、直角三角形中角所对的直角边等于斜边的一半、勾股定理等知识.要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证它们垂直即可解决问题.3、(1)中心(2)见解析【分析】(1)利用中心对称图形的意义得到答案即可;(2)①每个直角三角形的顶点均在方格纸的格点上,且四个三角形不重叠,是轴对称图形;②所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.(1)图1中的“弦图”的四个直角三角形组成的图形是中心对称图形,故答案为:中心;(2)如图2是轴对称图形而不是中心对称图形;图3既是轴对称图形,又是中心对称图形.【点睛】本题考查利用旋转或轴对称设计方案,关键是理解旋转和轴对称的概念,按要求作图即可.4、(1);(2)①见解析;②AE=AF+CE,证明见解析.【分析】(1)根据“线段DA的延长线与线段BC相交于点E”可求解;(2)①根据要求画出图形,即可得出结论;②在AE上截取AH=AF,先证△AFD≌△AHC,再证∠CHE=∠HCE,即可得出结果.【详解】(1)如图:AD只能在锐角∠EAF内旋转符合题意故α的取值范围为:;(2)补全图形如下:(3)AE=AF+CE,证明:在AE上截取AH=AF,由旋转可得:AB=AD,∴∠D=∠ABF,∵△ABC为等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴AD=AC,∵∠DAF=∠CAH,∴△AFD≌△AHC,∴∠AFD=∠AHC,∠D=∠ACH,∴∠AFB=∠CHE,∵∠AFB+∠ABF=∠ACH+∠HCE=60°,∴∠CHE+∠D=∠D+∠HCE=60°,∴∠CHE=∠HCE,∴CE=HE,∴AE=AH+HE=AF+CE.【点睛】本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线.5、见解析【分析】由题意画图,再根据圆周角定理的推论即可得证结论.【详解】证明:根据题意作图如下:∵BD是圆周角ABC的角平分线,∴∠ABD=∠CBD,∴,∴AD=CD.【点睛】本题考查了角,弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键.
相关试卷
这是一份沪科版九年级下册第24章 圆综合与测试练习题,共26页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份沪科版九年级下册第24章 圆综合与测试当堂达标检测题,共28页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试练习,共37页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。
