终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化沪科版九年级数学下册第24章圆专题攻克试卷(精选含答案)

    立即下载
    加入资料篮
    2021-2022学年基础强化沪科版九年级数学下册第24章圆专题攻克试卷(精选含答案)第1页
    2021-2022学年基础强化沪科版九年级数学下册第24章圆专题攻克试卷(精选含答案)第2页
    2021-2022学年基础强化沪科版九年级数学下册第24章圆专题攻克试卷(精选含答案)第3页
    还剩24页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题,共27页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列四个图案中,是中心对称图形但不是轴对称图形的是(    A. B. C. D.2、下列四个图案中,是中心对称图形的是(  )A. B.C. D.3、如图,PAPB是⊙O的切线,AB为切点,PA=4,则PB的长度为(    A.3 B.4 C.5 D.64、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是(    A. B.1 C.2 D.5、如图,是△ABC的外接圆,已知,则的大小为(      A.55° B.60° C.65° D.75°6、下列图形中,既是中心对称图形也是轴对称图形的是(    A. B. C. D.7、如图,在中,.将绕点按逆时针方向旋转得到,则图中阴影部分面积为(    A. B. C. D.8、在下列图形中,既是中心对称图形又是轴对称图形的是(   A.  B. C.  D.9、点P(3,﹣2)关于原点O的对称点的坐标是(  )A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)10、如图,点ABC均在⊙O上,连接OAOBACBC,如果OAOB,那么∠C的度数为(    A.22.5° B.45° C.90° D.67.5°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正六边形ABCDEF内接于⊙O,若⊙O的周长为8π,则正六边形的边长为________. 2、边长相等、各内角均为120°的六边形ABCDEF在直角坐标系内的位置如图所示,,点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60°,经过2021次旋转之后,点B的坐标是_____________.3、如图,已知扇形的圆心角为60°,半径为2,则图中弓形(阴影部分)的面积为______.4、一条弧所对的圆心角为,弧长等于,则这条弧的半径为________.5、如图,PMPN分别与⊙O相切于AB两点,C为⊙O上异于AB的一点,连接ACBC.若∠P=58°,则∠ACB的大小是___________.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则__.2、将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG(1)如图,若点AED第一次在同一直线上,BGCE交于点H,连接BE①求证:BE平分∠AEC②取BC的中点P,连接PH,求证:PHCG③若BC=2AB=2,求BG的长.(2)若点AED第二次在同一直线上,BC=2AB=4,直接写出点DBG的距离.3、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接写出点B关于原点对称的点B′的坐标:      (2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C24、如图,已知等边内接于⊙OD的中点,连接DB,DC,过点CAB的平行线,交BD的延长线于点E.(1)求证:CE是⊙O的切线;(2)若AB的长为6,求CE的长.5、如图,中,,连接,点MNP别是的中点.(1)请你判断的形状,并证明你的结论.(2)将绕点A旋转,若,请直接写出周长的最大值与最小值. -参考答案-一、单选题1、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.3、B【分析】由切线的性质可推出.再根据直角三角形全等的判定条件“HL”,即可证明,即得出【详解】PAPB是⊙O的切线,AB为切点,∴在中,故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.4、A【分析】CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据∠BCH=30°求解即可.【详解】解:如图,取BC的中点G,连接MG∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBMCH是等边△ABC的对称轴,HB=ABHB=BG又∵MB旋转到BNBM=BN在△MBG和△NBH中,∴△MBG≌△NBHSAS),MG=NH根据垂线段最短,MGCH时,MG最短,即HN最短,此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,MG=CG=HN=故选A.【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.5、C【分析】OA=OB,求出∠AOB=130°,根据圆周角定理求出的度数.【详解】解:∵OA=OB∴∠BAO=∴∠AOB=130°.=AOB=65°.故选:C【点睛】此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半.6、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意.故选:A.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.7、B【分析】阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积.【详解】解:由图可知:阴影部分的面积=扇形扇形由旋转性质可知:中,有勾股定理可知:阴影部分的面积=扇形扇形 故选:B.【点睛】本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键.8、B【分析】根据中心对称图形与轴对称图形的定义解答即可.【详解】解:A.是轴对称图形,不是中心对称图形,不符合题意;B既是中心对称图形又是轴对称图形,符合题意;C. 是轴对称图形,不是中心对称图形,不符合题意;D. 既不是中心对称图形,也不是轴对称图形,不符合题意.故选B.【点睛】本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.9、B【分析】根据“平面直角坐标系中任意一点Pxy),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).故选:B【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.10、B【分析】根据同弧所对的圆周角是圆心角的一半即可得.【详解】解:∵故选:B.【点睛】题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.二、填空题1、4【分析】由周长公式可得⊙O半径为4,再由正多边形的中心角公式可得正六边形ABCDEF中心角为,即可知正六边形ABCDEF为6个边长为4的正三角形组成的,则可求得六边形ABCDEF边长.【详解】∵⊙O的周长为8π∴⊙O半径为4∵正六边形ABCDEF内接于⊙O∴正六边形ABCDEF中心角为∴正六边形ABCDEF为6个边长为4的正三角形组成的∴正六边形ABCDEF边长为4.故答案为:4.【点睛】本题考查了正多边形的中心角公式,正n边形的每个中心角都等于,由中心角为得出正六边形ABCDEF为6个边长为4的正三角形组成的是解题的关键.2、【分析】根据旋转找出规律后再确定坐标.【详解】∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环组循环,∴经过2021次翻转为第337循环组的第5次翻转,点B在开始时点C的位置,∴翻转前进的距离为:如图,过点BBGxG则∠BAG=60°,∴点B的坐标为故答案为:【点睛】题考查旋转的性质与正多边形,由题意找出规律是解题的关键.3、【分析】根据弓形的面积=扇形的面积-三角形的面积求解即可.【详解】解:如图,ACOB∵圆心角为60°,OA=OB∴△OAB是等边三角形,OC=OB=1,AC=SOAB=OB×AC=×2×=S扇形OAB==∴弓形(阴影部分)的面积= S扇形OAB- SOAB=故答案为:【点睛】本题考查扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法以及直角三角形的边角关系是正确解答的关键.4、9cm【分析】由弧长公式即可求得弧的半径.【详解】故答案为:9cm【点睛】本题考查了扇形的弧长公式,善于对弧长公式变形是关键.5、【分析】如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接 (即)分别在优弧与劣弧上, PMPN分别与⊙O相切于AB两点, 故答案为:【点睛】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.三、解答题1、2+【分析】连接ACCMAB,过点CCHOAH,设OC=a.利用勾股定理构建方程解决问题即可.【详解】解:连接ACCMAB,过点CCHOAH,设OC=a∵∠AOB=90°,AB是直径,A(-4,0),B(0,2),∵∠AMC=2∠AOC=120°,RtCOH中,RtACH中,AC2=AH2+CH2a=2+ 或2-(因为OCOB,所以2-舍弃),OC=2+故答案为:2+【点睛】本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.2、(1)①见解析;②见解析;③(2)【分析】(1)①根据旋转的性质得到,求得,根据平行线的性质得到,于是得到结论;②如图1,过点的垂线,根据角平分线的性质得到,求得,根据全等三角形的性质得到,根据三角形的中位线定理即可得到结论;③如图2,过点的垂线,解直角三角形即可得到结论.(2)如图3,连接,过的延长线于的延长线于根据旋转的性质得到,解直角三角形得到,根据三角形的面积公式即可得到结论.(1)解:①证明:矩形绕着点按顺时针方向旋转得到矩形平分②证明:如图1,过点的垂线平分即点中点,中点,③解:如图2,过点的垂线(2)解:如图3,连接,过的延长线于的延长线于将矩形绕着点按顺时针方向旋转得到矩形第二次在同一直线上,【点睛】本题考查了旋转的性质,全等三角形的判定和性质,矩形的性质,三角形的中位线定理,勾股定理,解直角三角形,解题的关键是正确地作出辅助线.3、(1)(4,﹣1);(2)见解析;(3)见解析.【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.【详解】(1)点B关于原点对称的点B′的坐标为(4,﹣1),故答案为:(4,﹣1);(2)如图所示,△A1B1C1即为所求.(3)如图所示,△A2B2C2即为所求.【点睛】本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.4、(1)见解析;(2)3【分析】(1)由题意连接OCOB,由等边三角形的性质可得∠ABC=∠BCE=60°,求出∠OCB=30°,则∠OCE=90°,结论得证;(2)根据题意由条件可得∠DBC=30°,∠BEC=90°,进而即可求出CE=BC=3.【详解】解:(1)证明:如图连接OC、OB是等边三角形    又 ∵与⊙O相切; (2)∵四边形ABCD是⊙O的内接四边形,D的中点,     【点睛】本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识.解题的关键是正确作出辅助线,利用圆的性质进行求解.5、(1)是等腰直角三角形,证明见解析(2)周长最小值为。最大值为【分析】(1)连接BD,CE,根据SAS证明得BD=CE,根据三角形中位线性质可证明PM=PN;,进而可得结论;(2)当BD最小时即点D在AB上,此时周长最小,当点D在BA的延长线上时,BD最大,此时周长最大,均为,求出BD的长即可解决问题.(1)连接BD,CE,如图, ∴BD=CE,∵点MNP分别是的中点//,PN//BD,PN=BD∴PM=PN, ∵PN//BD∴∠PNC=∠DBC∴∠MPN=∠MPD+∠DPN=∠ECA+∠ACD+∠PCN+∠PNC=∠ACB+∠DBC+∠ABD=∠ACB+∠ABC=90° 是等腰直角三角形;(2)由(1)知,是等腰直角三角形 的周长为 的周长为 当BD最小时即点D在AB上,此时周长最小,∵AB=8,AD=3∴BD的最小值为AB-AD=8-3=5周长最小为当点D在BA的延长线上时,BD最大,此时周长最大,∴BD=AB+AD=8+3=11周长最大为【点睛】此题主要考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,三角形中位线定理的应用等知识,熟练掌握相关知识是解答本题的关键. 

    相关试卷

    初中沪科版第24章 圆综合与测试课后复习题:

    这是一份初中沪科版第24章 圆综合与测试课后复习题,共27页。试卷主要包含了下列说法正确的个数有,下列判断正确的个数有等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试课后作业题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后作业题,共32页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。

    初中沪科版第24章 圆综合与测试巩固练习:

    这是一份初中沪科版第24章 圆综合与测试巩固练习,共31页。试卷主要包含了如图,是的直径,,下列判断正确的个数有等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map