搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年沪科版九年级数学下册第24章圆章节练习练习题

    2021-2022学年沪科版九年级数学下册第24章圆章节练习练习题第1页
    2021-2022学年沪科版九年级数学下册第24章圆章节练习练习题第2页
    2021-2022学年沪科版九年级数学下册第24章圆章节练习练习题第3页
    还剩38页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第24章 圆综合与测试同步达标检测题

    展开

    这是一份2020-2021学年第24章 圆综合与测试同步达标检测题,共41页。试卷主要包含了下列叙述正确的有个.等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是( )
    A.80°B.70°C.60°D.50°
    2、如图,CD是的高,按以下步骤作图:
    (1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于G、H两点.
    (2)作直线GH交AB于点E.
    (3)在直线GH上截取.
    (4)以点F为圆心,AF长为半径画圆交CD于点P.
    则下列说法错误的是( )

    A.B.C.D.
    3、如图,是△ABC的外接圆,已知,则的大小为( )
    A.55°B.60°C.65°D.75°
    4、如图,AB,BC,CD分别与⊙O相切于E、F、G三点,且ABCD,BO=3,CO=4,则OF的长为( )
    A.5B.C.D.
    5、如图,在中,,,.将绕点按逆时针方向旋转后得到,则图中阴影部分面积为( )
    A.B.C.D.
    6、如图,四边形内接于,如果它的一个外角,那么的度数为( )
    A.B.C.D.
    7、下列叙述正确的有( )个.
    (1)随着的增大而增大;
    (2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;
    (3)斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;
    (4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;
    (5)以为三边长度的三角形,不是直角三角形.
    A.0B.1C.2D.3
    8、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为( )
    A.4B.6C.8D.10
    9、如图,与的两边分别相切,其中OA边与相切于点P.若,,则OC的长为( )
    A.8B.C.D.
    10、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )
    A.50°B.70°C.110°D.120°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、到点的距离等于8厘米的点的轨迹是__.
    2、龙湖实验中学的操场有4条等宽的跑道,每条跑道是由两条直跑道和两个半圆形弧道连接而成,请根据小泓与瞿老师的对话计算每条跑道的宽度是______米.
    3、已知如图,AB=8,AC=4,∠BAC=60°,BC所在圆的圆心是点O,∠BOC=60°,分别在、线段AB和AC上选取点P、E、F,则PE+EF+FP的最小值为____________.
    4、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为______.
    5、将点绕x轴上的点G顺时针旋转90°后得到点,当点恰好落在以坐标原点O为圆心,2为半径的圆上时,点G的坐标为________.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图1,在⊙O中,AC=BD,且AC⊥BD,垂足为点E.
    (1)求∠ABD的度数;
    (2)图2,连接OA,当OA=2,∠OAB=15°,求BE的长度;
    (3)在(2)的条件下,求的长.
    2、如图,已知为的直径,切于点C,交的延长线于点D,且.
    (1)求的大小;
    (2)若,求的长.
    3、在等边中,是边上一动点,连接,将绕点顺时针旋转120°,得到,连接.
    (1)如图1,当、、三点共线时,连接,若,求的长;
    (2)如图2,取的中点,连接,猜想与存在的数量关系,并证明你的猜想;
    (3)如图3,在(2)的条件下,连接、交于点.若,请直接写出的值.
    4、在平面直角坐标系xOy中,的半径为2.点P,Q为外两点,给出如下定义:若上存在点M,N,使得P,Q,M,N为顶点的四边形为矩形,则称点P,Q是的“成对关联点”.
    (1)如图,点A,B,C,D横、纵坐标都是整数.在点B,C,D中,与点A组成的“成对关联点”的点是______;
    (2)点在第一象限,点F与点E关于x轴对称.若点E,F是的“成对关联点”,直接写出t的取值范围;
    (3)点G在y轴上.若直线上存在点H,使得点G,H是的“成对关联点”,直接写出点G的纵坐标的取值范围.
    5、已知:如图,正方形的边长为1,在射线AB上取一点E,联结DE,将ADE绕点D针旋转90°,E点落在点F处,联结EF,与对角线BD所在的直线交于点M,与射线DC交于点N.求证:
    (1)当时,求的值;
    (2)当点E在线段AB上,如果,,求y关于x的函数解析式,并写出定义域;
    (3)联结AM,直线AM与直线BC交于点G,当时,求AE的值.
    -参考答案-
    一、单选题
    1、A
    【分析】
    根据三角形旋转得出,,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.
    【详解】
    证明:∵绕点C逆时针旋转得到,
    ∴,,
    ∴∠ADC=∠DAC,
    ∵点A,D,E在同一条直线上,
    ∴,
    ∴∠DAC=50°,
    ∴∠BAD=∠BAC-∠DAC=80°
    故选A.
    【点睛】
    本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.
    2、C
    【分析】
    连接AF、BF,由作法可知,FE垂直平分AB,再根据可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.
    【详解】
    解:连接AF、BF,由作法可知,FE垂直平分AB,
    ∴,故A正确;
    ∵CD是的高,
    ∴,故B正确;
    ∵,,
    ∴,故C错误;
    ∵,
    ∴∠AFE=45°,
    同理可得∠BFE=45°,
    ∴∠AFB=90°,
    ,故D正确;
    故选:C.
    【点睛】
    本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.
    3、C
    【分析】
    由OA=OB,,求出∠AOB=130°,根据圆周角定理求出的度数.
    【详解】
    解:∵OA=OB,,
    ∴∠BAO=.
    ∴∠AOB=130°.
    ∴=∠AOB=65°.
    故选:C.
    【点睛】
    此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半.
    4、D
    【分析】
    连接OF,OE,OG,根据切线的性质及角平分线的判定可得OB平分,OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.
    【详解】
    解:连接OF,OE,OG,
    ∵AB、BC、CD分别与相切,
    ∴,,,且,
    ∴OB平分,OC平分,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,

    ∴SΔOBC=12OB·OC=12BC·OF,
    ∴,
    故选:D.
    【点睛】
    题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.
    5、B
    【分析】
    阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积.
    【详解】
    解:由图可知:阴影部分的面积=扇形扇形,
    由旋转性质可知:,,
    ,,
    在中,,,,
    ,,
    有勾股定理可知:,
    阴影部分的面积=扇形扇形


    故选:B.
    【点睛】
    本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键.
    6、D
    【分析】
    由平角的性质得出∠BCD=116°,再由内接四边形对角互补得出∠A=64°,再由圆周角定理即可求得∠BOD=2∠A=128°.
    【详解】


    ∵四边形内接于

    又∵
    ∴.
    故选:D.
    【点睛】
    本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.
    7、D
    【分析】
    根据反比例函数的性质,得当或者时,随着的增大而增大;根据直径所对圆周角为直角的性质,得斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解.
    【详解】
    当或者时,随着的增大而增大,故(1)不正确;
    如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;,故(2)正确;
    ∵圆的直径所对的圆周角为直角
    ∴斜边为的直角三角形顶点A的轨迹是以中点为圆心,长为直径的圆,故(3)正确;
    三角形三边的垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确;


    ∴以为三边长度的三角形,是直角三角形,故(5)错误;
    故选:D.
    【点睛】
    本题考查了三角形、垂直平分线、反比例函数、圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解.
    8、A
    【分析】
    根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.
    【详解】
    解:∵AB是⊙O的直径,
    ∴ ,
    ∵∠BAC=30°,BC=2,
    ∴.
    故选:A
    【点睛】
    本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.
    9、C
    【分析】
    如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.
    【详解】
    解:如图所示,连接CP,
    ∵OA,OB都是圆C的切线,∠AOB=90°,P为切点,
    ∴∠CPO=90°,∠COP=45°,
    ∴∠PCO=∠COP=45°,
    ∴CP=OP=4,
    ∴,
    故选C.
    【点睛】
    本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.
    10、B
    【分析】
    根据旋转可得,,得.
    【详解】
    解:,,

    将绕点逆时针旋转得到△,使点的对应点恰好落在边上,
    ,,

    故选:B.
    【点睛】
    本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.
    二、填空题
    1、以点为圆心,8厘米长为半径的圆
    【分析】
    由题意直接根据圆的定义进行分析即可解答.
    【详解】
    到点的距离等于8厘米的点的轨迹是:以点为圆心,2厘米长为半径的圆.
    故答案为:以点为圆心,8厘米长为半径的圆.
    【点睛】
    本题主要考查了圆的定义,正确理解定义是关键,注意掌握圆的定义是在同一平面内到定点的距离等于定长的点的集合.
    2、
    【分析】
    设跑道的宽为米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可.
    【详解】
    解:设跑道的宽为米,由对称性设内圈两个半圆形弧道拼成的圆的半径为,
    根据题意可得:,
    解得:,
    故答案是:.
    【点睛】
    本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解.
    3、12
    【分析】
    如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,想办法求出MN的最小值即可解决问题.
    【详解】
    解:如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,
    ∴当MN的值最小时,△PEF的值最小,
    ∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,
    ∴∠MAN=120°,
    ∴MN=AM=PA,
    ∴当PA的值最小时,MN的值最小,
    取AB的中点J,连接CJ.
    ∵AB=8,AC=4,
    ∴AJ=JB=AC=4,
    ∵∠JAC=60°,
    ∴△JAC是等边三角形,
    ∴JC=JA=JB,
    ∴∠ACB=90°,
    ∴BC=,
    ∵∠BOC=60°,OB=OC,
    ∴△OBC是等边三角形,
    ∴OB=OC=BC=4,∠BCO=60°,
    ∴∠ACH=30°,
    ∵AH⊥OH,
    AH=AC=2,CH=AH=2,
    ∴OH=6,
    ∴OA==4,
    ∵当点P在直线OA上时,PA的值最小,最小值为-,
    ∴MN的最小值为•(-)=-12.
    故答案:-12.
    【点睛】
    本题考查了圆周角定理,垂径定理,轴对称-最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考填空题中的压轴题.
    4、
    【分析】
    先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.
    【详解】
    解:∵BC是圆O的切线,
    ∴∠OBC=90°,
    ∵四边形ABCO是平行四边形,
    ∴AO=BC,
    又∵AO=BO,
    ∴BO=BC,
    ∴∠BOC=∠BCO=45°,
    ∵OD=OB,
    ∴∠ODB=∠OBD,
    ∵∠ODB+∠OBD=∠BOC,
    ∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,
    故答案为:22.5°.
    【点睛】
    本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.
    5、或
    【分析】
    设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,由全等三角形求出点坐标,由点在2为半径的圆上,根据勾股定理即可求出点G的坐标.
    【详解】
    设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,
    如图所示:
    ∵,
    ∴,,
    ∵点A绕点G顺时针旋转90°后得到点,
    ∴,,
    ∴,
    ∵轴,轴,
    ∴,
    ∴,
    ∴,
    在与中,

    ∴,
    ∴,,
    ∴,
    ∴,
    在中,由勾股定理得:,
    解得:或,
    ∴或.
    故答案为:,.
    【点睛】
    本题考查旋转的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识之间的应用是解题的关键.
    三、解答题
    1、(1);(2);(3)
    【分析】
    (1)如图,过作 垂足分别为 连接证明 四边形为正方形,可得 证明 可得答案;
    (2)先求解 再结合(1)的结论可得答案;
    (3)如图,连接 先求解 再证明 再求解 可得 再利用弧长公式计算即可.
    【详解】
    解:(1)如图,过作 垂足分别为 连接




    四边形为矩形,
    由勾股定理可得: 而

    四边形为正方形,



    (2)如图,过作 垂足分别为
    由(1)得:四边形为正方形,

    OA=2,∠OAB=15°,



    (3)如图,连接








    【点睛】
    本题考查的是勾股定理的应用,等腰三角形的判定与性质,矩形,正方形的判定与性质,垂径定理的应用,弧长的计算,掌握以上知识并灵活运用是解本题的关键.
    2、
    (1)45°
    (2)
    【分析】
    (1)连接OC,根据切线的性质得到OC⊥CD,根据圆周角定理得到∠DOC=2∠CAD,进而证明∠D=∠DOC,根据等腰直角三角形的性质求出∠D的度数;
    (2)根据等腰三角形的性质求出OC,根据弧长公式计算即可.
    (1)
    连接.
    ∵ ,
    ∴ ,即 .
    ∵ ,
    ∴ .
    ∵ 是⊙的切线,
    ∴ ,即 .
    ∴ .
    ∴ .
    ∴ .
    (2)
    ∵ ,,
    ∴ .
    ∵ ,
    ∴ .
    ∴ 的长.
    【点睛】
    本题考查的是切线的性质、圆周角定理、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.
    3、(1);(2);证明见解析;(3)
    【分析】
    (1)过点作于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,,,勾股定理即可求解;
    (2)延长至,使得,连接,过点作,交于点,根据平行四边形的性质可得,,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含30度角的直角三角形的性质,可得;
    (3)过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,即可求得的值
    【详解】
    (1)过点作于点,如图
    将绕点顺时针旋转120°,得到,
    是等边三角形


    在中,,
    (2)如图,延长至,使得,连接,过点作,交于点,
    点是的中点

    四边形是平行四边形

    将绕点顺时针旋转120°,得到,
    是等边三角形
    ,,
    是等边三角形
    设,则,

    ,
    是等边三角形


    (3) 如图,过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,
    四点共圆
    由(2)可知,
    将绕点顺时针旋转120°,得到,
    是的中点,
    是的中位线
    是等腰直角三角形
    四边形是矩形


    在中,
    ,
    在中,
    在中
    【点睛】
    本题考查了旋转的性质,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键.
    4、(1)B和C;(2);(3)
    【分析】
    (1)根据图形可确定与点A组成的“成对关联点”的点;
    (2)如图,点E在直线上,点F在直线上,当点E在线段上,点F在线段上时,有的“成对关联点”,求出即可得出的取值范围;
    (3)分类讨论:点G在上,点G在的下方和点G在的上方,构造的“成对关联点”,即可求出的取值范围.
    【详解】
    (1)如图所示:
    在点B,C,D中,与点A组成的“成对关联点”的点是B和C,
    故答案为:B和C;
    (2)∵
    ∴在直线上,
    ∵点F与点E关于x轴对称,
    ∴在直线,
    如下图所示:
    直线和与分别交于点,,与直线分别交于,,
    由题可得:,
    当点E在线段上时,有的“成对关联点”
    ∴;
    (3)
    如图,当点G在上时,轴,在上不存在这样的矩形;
    如图,当点G在下方时,也不存在这样的矩形;
    如图,当点G在上方时,存在这样的矩形GMNH,
    当恰好只能构成一个矩形时,
    设,直线与y轴相交于点K,
    则,,,,,
    ∴,即,
    ∴,
    解得:或(舍),
    综上:当时,点G,H是的“成对关联点”.
    【点睛】
    本题考查几何图形综合问题,属于中考压轴题,掌握“成对关联点”的定义是解题的关键.
    5、
    (1);
    (2),0≤x≤1;
    (3)AE的值为或.
    【分析】
    (1)过点E作EH⊥BD与H,根据正方形的边长为1,,求出EB=1-,根据正方形性质可求∠ABD=45°,根据EH⊥BD,得出∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,求出EH=BH=BEsin45=,以及 DH=DB-BH=,利用三角函数定义求解即可;
    (2)解:根据AE=x,求出BE=1-x,根据旋转将△ADE绕点D针旋转90°,得到△DCF,CF=AE=x,根据勾股定理ED=FD=,EF=,可证△DEF为等腰直角三角形,先证△BEM∽△FDM,得出,再证△EMD∽△BMF,得出,两式相乘得出,整理即可;
    (3)当点G在BC上,,先证△BGM∽△DAM,得出,由(2)知△BEM∽△FDM,得出,得出,结合,消去y, 当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,证明△BGM∽△DAM,得出,根据∠LBM=∠CBD=45°,ML⊥BC,证出△MLB为等腰直角三角形,再证△MLB∽△DCB,,CD=1,ML=,ML∥BE,结合△LMF∽△BEF,得出即解方程即可.
    (1)
    解:过点E作EH⊥BD与H,
    ∵正方形的边长为1,,
    ∴EB=1-,
    ∵BD为正方形对角线,
    ∴BD平分∠ABC,
    ∴∠ABD=45°,
    ∵EH⊥BD,
    ∴∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,
    ∴EH=BH,
    ∴EH=BH=BEsin45=,AB=BDcs45°,
    ∴,
    ∴DH=DB-BH=,

    (2)
    解:如上图,∵AE=x,
    ∴BE=1-x,
    ∵将△ADE绕点D针旋转90°,得到△DCF,
    ∴CF=AE=x,ED=FD=,
    ∴BF=BC+CF=1+x,
    在Rt△EBF中EF=,
    ∵∠EDF=90°,ED=FD,
    ∴△DEF为等腰直角三角形,
    ∴∠DFE=∠DEF=45°,
    ∴∠EBM=∠MFD=45°,
    ∵∠EMB=∠DMF,
    ∴△BEM∽△FDM,
    ∴,即,
    ∵∠DEM=∠FBM=45°,∠EMD=∠BMF,
    ∴△EMD∽△BMF,
    ∴,即,
    ∴,
    ∴,
    ∴即,
    ∴,0≤x≤1;
    (3)
    解:当点G在BC上,,
    ∵四边形ABCD为正方形,
    ∴AD∥BG,
    ∴∠DAM=∠BGM,∠ADM=∠GBM,
    ∴△BGM∽△DAM,
    ∴,
    ∵由(2)知△BEM∽△FDM,
    ∴,
    ∵DB=,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴即,
    解,舍去;
    当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,
    ∵GB∥AD,
    ∴∴∠DAM=∠BGM,∠ADM=∠GBM,
    ∴△BGM∽△DAM,
    ∴,
    ∴,
    ∴,
    ∵∠LBM=∠CBD=45°,ML⊥BC,
    ∴△MLB为等腰直角三角形,
    ∵ML∥CD,
    ∴∠LMB=∠CDB,∠L=∠DCB,
    ∴△MLB∽△DCB,
    ∴,CD=1,
    ∴ML=
    ∵ML∥BE,
    ∴∠L=∠FBE,∠LMF=∠BEF,
    ∴△LMF∽△BEF,
    ∴,
    ∵BE=AE-AB=x-1,LF=LB+BC+CF=,BF=BC+CF=1+x,
    ∴,
    整理得:,
    解得,舍去,
    ∴AE的值为或.
    【点睛】
    本题考查正方形性质,图形旋转先证,等腰直角三角形判定与性质,锐角三角函数定义,三角形相似判定与性质,勾股定理,解一元二次方程,函数关系式,本题难度大,利用辅助线狗仔三角形相似是解题关键.

    相关试卷

    2021学年第24章 圆综合与测试课堂检测:

    这是一份2021学年第24章 圆综合与测试课堂检测,共30页。

    初中第24章 圆综合与测试测试题:

    这是一份初中第24章 圆综合与测试测试题,共37页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试习题,共31页。试卷主要包含了如图,是的直径,,将一把直尺等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map