终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度沪科版九年级数学下册第24章圆难点解析试卷(含答案详解)

    立即下载
    加入资料篮
    2021-2022学年度沪科版九年级数学下册第24章圆难点解析试卷(含答案详解)第1页
    2021-2022学年度沪科版九年级数学下册第24章圆难点解析试卷(含答案详解)第2页
    2021-2022学年度沪科版九年级数学下册第24章圆难点解析试卷(含答案详解)第3页
    还剩35页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题,共38页。
    沪科版九年级数学下册第24章圆难点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,,,则阴影部分的面积为( )

    A. B. C. D.
    2、如图,在中,,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为( )

    A.1 B.2 C.3 D.4
    3、下列语句判断正确的是(  )
    A.等边三角形是轴对称图形,但不是中心对称图形
    B.等边三角形既是轴对称图形,又是中心对称图形
    C.等边三角形是中心对称图形,但不是轴对称图形
    D.等边三角形既不是轴对称图形,也不是中心对称图形
    4、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是(  )

    A.80° B.70° C.60° D.50°
    5、如图,AB 为⊙O 的直径,弦 CD^AB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为( )

    A.3 B.2 C.1 D.
    6、下列图形中,既是中心对称图形又是抽对称图形的是( )
    A. B. C. D.
    7、如图,是的直径,弦,垂足为,若,则( )

    A.5 B.8 C.9 D.10
    8、如图,AB为的直径,,,劣弧BC的长是劣弧BD长的2倍,则AC的长为( )

    A. B. C.3 D.
    9、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′AB,则旋转角的度数为( )

    A.64° B.52° C.42° D.36°
    10、在半径为6cm的圆中,的圆心角所对弧的弧长是( )
    A.cm B.cm C.cm D.cm
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是______.

    2、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分的面积为_____.

    3、到点的距离等于8厘米的点的轨迹是__.
    4、如图,将Rt△ABC的斜边AB与量角器的直径恰好重合,B点与零刻度线的一端重合,∠ABC=38°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是 ___.

    5、如图,已知,外心为,,,分别以,为腰向形外作等腰直角三角形与,连接,交于点,则的最小值是______.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.

    (1)求证:PB是⊙O的切线;
    (2)连接OP,若OP∥BC,且OP=8,⊙O的半径为3,求BC的长.
    2、对于平面直角坐标系xOy中的图形M和点P给出如下定义:Q为图形M上任意一点,若P,Q两点间距离的最大值和最小值都存在,且最大值是最小值的2倍,则称点P为图形M的“二分点”.
    已知点N(3,0),A(1,0),,.

    (1)①在点A,B,C中,线段ON的“二分点”是______;
    ②点D(a,0),若点C为线段OD的“二分点”,求a的取值范围;
    (2)以点O为圆心,r为半径画圆,若线段AN上存在的“二分点”,直接写出r的取值范围.
    3、如图1,BC是⊙O的直径,点A,P在⊙O上,且分别位于BC的两侧(点A、P均不与点B、C重合),过点A 作AQ⊥AP,交PC 的延长线于点Q,AQ交⊙O于点D,已知AB=3,AC=4.

    (1)求证:△APQ∽△ABC.
    (2)如图2,当点C为的中点时,求AP的长.
    (3)连结AO,OD,当∠PAC与△AOD的一个内角相等时,求所有满足条件的AP的长.
    4、在所给的的正方形网格中,按下列要求操作:(单位正方形的边长为1)

    (1)请在第二象限内的格点上找一点,使是以为底的等腰三角形,且腰长是无理数,求点的坐标;
    (2)画出以点为中心,旋转180°后的,并求的面积.
    5、在平面直角坐标系xOy中,⊙O的半径为1.
    对于线段AB,给出如下定义:若线段AB沿着某条直线l对称可以得到⊙O的弦A′B′,则称线段AB是⊙O的以直线l为对称轴的“反射线段”,直线l称为“反射轴”.
    (1)如图,线段CD,EF,GH中是⊙O的以直线l为对称轴的“反射线段”有    ;
    (2)已知A点坐标为(0,2),B点坐标为(1,1),
    ①若线段AB是⊙O的以直线l为对称轴的“反射线段”,求反射轴l与y轴的交点M的坐标.
    ②若将“反射线段”AB沿直线y=x的方向向上平移一段距离S,其反射轴l与y轴的交点的纵坐标yM的取值范围为yM,求S.
    (3)已知点M,N是在以原点为圆心,半径为2的圆上的两个动点,且满足MN=1,若MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,求反射轴l未经过的区域的面积.
    (4)已知点M,N是在以(2,0)为圆心,半径为的圆上的两个动点,且满足MN,若MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,请直接写出反射轴l与y轴交点的纵坐标的取值范围.


    -参考答案-
    一、单选题
    1、B
    【分析】
    由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案.
    【详解】
    解:根据题意,如图:

    ∵AB是的直径,OD是半径,,
    ∴AE=CE,
    ∴阴影CED的面积等于AED的面积,
    ∴,
    ∵,,
    ∴,
    ∴;
    故选:B
    【点睛】
    本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.
    2、B
    【分析】
    由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2.
    【详解】
    由题意以及旋转的性质知AD=AB,∠BAD=60°
    ∴∠ADB=∠ABD
    ∵∠ADB+∠ABD+∠BAD=180°
    ∴∠ADB=∠ABD=60°
    故为等边三角形,即AB= AD =BD=2
    则CD=BC-BD=4-2=2
    故选:B.
    【点睛】
    本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形.
    3、A
    【分析】
    根据等边三角形的对称性判断即可.
    【详解】
    ∵等边三角形是轴对称图形,但不是中心对称图形,
    ∴B,C,D都不符合题意;
    故选:A.
    【点睛】
    本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.
    4、A
    【分析】
    根据三角形旋转得出,,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.
    【详解】
    证明:∵绕点C逆时针旋转得到,
    ∴,,
    ∴∠ADC=∠DAC,
    ∵点A,D,E在同一条直线上,
    ∴,
    ∴∠DAC=50°,
    ∴∠BAD=∠BAC-∠DAC=80°
    故选A.
    【点睛】
    本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.
    5、B
    【分析】
    连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.
    【详解】
    解:连接OC,如图

    ∵AB 为⊙O 的直径,CD^AB,垂足为点 E,CD=8,
    ∴,
    ∵,
    ∴,
    ∴;
    故选:B.
    【点睛】
    本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出.
    6、B
    【详解】
    解:.是轴对称图形,不是中心对称图形,故此选项不符合题意;
    .既是轴对称图形,也是中心对称图形,故此选项符合题意;
    .是轴对称图形,不是中心对称图形,故此选项不符合题意;
    .不是轴对称图形,是中心对称图形,故此选项不符合题意;
    故选:B.
    【点睛】
    本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    7、C
    【分析】
    连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得
    【详解】
    解:如图,连接,

    ∵是的直径,弦,

    设的半径为,则
    在中,,

    解得


    故选C
    【点睛】
    本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    8、D
    【分析】
    连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得
    【详解】
    如图,连接,





    是直角三角形,且




    是等边三角形

    是直径,


    故选D
    【点睛】
    本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键.
    9、B
    【分析】
    先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠AC′C=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.
    【详解】
    解:∵CC′∥AB,
    ∴∠ACC′=∠CAB=64°
    ∵△ABC在平面内绕点A旋转到△AB′C′的位置,
    ∴∠CAC′等于旋转角,AC=AC′,
    ∴∠ACC′=∠AC′C=64°,
    ∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,
    ∴旋转角为52°.
    故选:B.
    【点睛】
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
    10、C
    【分析】
    直接根据题意及弧长公式可直接进行求解.
    【详解】
    解:由题意得:的圆心角所对弧的弧长是;
    故选C.
    【点睛】
    本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.
    二、填空题
    1、35°
    【分析】
    根据旋转的性质可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
    【详解】
    解:∵△COD是△AOB绕点O顺时针旋转30°后得到的图形,
    ∴∠AOD=∠BOC=30°,AO=DO,
    ∵∠AOC=100°,
    ∴∠BOD=100°−30°×2=40°,
    ∠ADO=∠A=(180°−∠AOD)=(180°−30°)=75°,
    由三角形的外角性质得,∠B=∠ADO−∠BOD=75°−40°=35°.
    故答案为:35°.
    【点睛】
    本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
    2、
    【分析】
    利用勾股定理求出AC及AB的长,根据阴影面积等于求出答案.
    【详解】
    解:由旋转得,,=∠BAC=30°,
    ∵∠ABC=90°,∠BAC=30°,BC=1,
    ∴AC=2BC=2,AB=,,
    ∴阴影部分的面积=

    =,
    故答案为:.

    【点睛】
    此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.
    3、以点为圆心,8厘米长为半径的圆
    【分析】
    由题意直接根据圆的定义进行分析即可解答.
    【详解】
    到点的距离等于8厘米的点的轨迹是:以点为圆心,2厘米长为半径的圆.
    故答案为:以点为圆心,8厘米长为半径的圆.
    【点睛】
    本题主要考查了圆的定义,正确理解定义是关键,注意掌握圆的定义是在同一平面内到定点的距离等于定长的点的集合.
    4、76°或142°
    【分析】
    设AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,根据圆周角定理得∠BOD=2∠BCD,根据等腰三角形的性质分BC为底边和BC为腰求∠BCD的度数即可.
    【详解】
    解:设AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,
    ∵Rt△ABC的斜边AB与量角器的直径恰好重合,
    ∴A、C、B、D四点共圆,圆心为点O,
    ∴∠BOD=2∠BCD,
    ①若BC为等腰三角形的底边时,如图射线CD1,则∠BCD1=∠ABC=38°,
    连接OD1,则∠BOD1=2∠BCD1=76°;
    ②若BC为等腰三角形的腰时,
    当∠ABC为顶角时,如图射线CD2,则∠BCD2=(180°-∠ABC)÷2=71°,
    连接OD2,则∠BOD2=2∠BCD2=142°,
    当∠ABC为底角时,∠BCD=180°-2∠ABC=104°,不符合题意,舍去,
    综上,点D在量角器上对应的度数是76°或142°,
    故答案为:76°或142°.

    【点睛】
    本题考查圆周角定理、等腰三角形的性质、三角形的内角和定理,熟练掌握圆周角定理,利用分类讨论思想解决问题是解答的关键.
    5、
    【分析】
    由与是等腰直角三角形,得到,,根据全等三角形的性质得到,求得在以为直径的圆上,由的外心为,,得到,如图,当时,的值最小,解直角三角形即可得到结论.
    【详解】
    解:与是等腰直角三角形,


    在与中,

    ≌,



    在以为直径的圆上,
    的外心为,,

    如图,当时,的值最小,



    ,,

    则的最小值是,
    故答案为:.

    【点睛】
    本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.
    三、解答题
    1、
    (1)见解析
    (2)
    【分析】
    (1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;
    (2)证明,得出对应边成比例,即可求出的长.
    (1)
    证明:连接,如图所示:

    是的直径,






    即,
    是的切线;
    (2)
    解:的半径为,
    ,,





    又,


    即,

    【点睛】
    本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定.
    2、(1)①B和C;②或;(2)或
    【分析】
    (1)①分别找出点A,B,C到线段ON的最小值和最大值,是否满足“二分点”定义即可;
    ②对a的取值分情况讨论:、、和,根据“二分点”的定义可求解;
    (2)设线段AN上存在的“二分点”为,对的取值分情况讨论、,、,和,根据“二分点”的定义可求解.
    【详解】
    (1)①

    ∵点A在ON上,故最小值为0,不符合题意,
    点B到ON的最小值为,最大值为,
    ∴点B是线段ON的“二分点”,
    点C到ON的最小值为1,最大值为,
    ∴点C是线段ON的“二分点”,
    故答案为:B和C;
    ②若时,如图所示:

    点C到OD的最小值为,最大值为,
    ∵点C为线段OD的“二分点”,
    ∴,
    解得:;
    若,如图所示:

    点C到OD的最小值为1,最大值为,满足题意;
    若时,如图所示:

    点C到OD的最小值为1,最大值为,
    ∵点C为线段OD的“二分点”,
    ∴,
    解得:(舍);
    若时,如图所示:

    点C到OD的最小值为,最大值为,
    ∵点C为线段OD的“二分点”,
    ∴,
    解得:或(舍),
    综上所得:a的取值范围为或;
    (2)

    如图所示,设线段AN上存在的“二分点”为,
    当时,最小值为:,最大值为:,
    ∴,即,
    ∵,

    ∴;
    当,时,最小值为:,最大值为:,
    ∴∴,即,
    ∵,
    ∴,
    ∵,
    ∴不存在;
    当,时,最小值为:,最大值为:,
    ∴,即,
    ∴,
    ∵,
    ∴不存在;
    当时,最小值为:,最大值为:,
    ∴,即,
    ∴,
    ∵,
    ∴,
    综上所述,r的取值范围为或.
    【点睛】
    本题考查坐标上的两点距离,解一元二次方程解不等式以及点到圆的距离求最值,根据题目所给条件,掌握“二分点”的定义是解题的关键.
    3、(1)见解析;(2)(3)当,时,;当时,.
    【分析】
    (1)通过证,,即可得;
    (2)先证是等腰直角三角形,求,通过,得,求CQ长,即可求PQ得长,通过,即可得,即可求AP.
    (3)分类讨论, ,,,三种情况讨论,再通过勾股定理和相似即可求解.
    【详解】
    证明:(1)∵AQ⊥AP

    ∵BC是⊙O的直径




    (2)如图,连接CD,PD

    ∵BC是⊙O的直径

    ∵AB=3,AC=4
    ∴利用勾股定理得:,即直径为5


    ∴DP是⊙O的直径,且DP=BC=5
    ∵点C为的中点
    ∴CD=PC


    ∴是等腰直角三角形
    ∴利用勾股定理得:,则
    ∵,



    ∴,即:



    ∴,即:

    (3)连接AO,OD,OP,CD,OD交AC于点M

    ∵(已证)
    ∴OD,OP共线,为⊙O的直径
    情况一:当时
    ∵,

    ∴AP=PC



    ∴即
    ∵AP=PC

    ∴在中,

    ∴在中,
    情况二:当时,



    同情况一:
    情况三:当时
    ∵,

    ∴,
    ∵OA=OD



    综上所述,当,时,;当时,.
    【点睛】
    本题考查了圆周角定理,垂径定理,圆的内接四边形的性质,勾股定理,相似三角形的性质和判定等,是圆的综合题。解答此题的关键是,通过圆的性质,找到角与角、边与边之间的关系.
    4、
    (1)图见解析,点的坐标为
    (2)图见解析,4
    【分析】
    (1)根据题意,腰长为无理数且为以AB为底的等腰三角形,只在第二象限,作图即可确定点,然后写出点的坐标即可;
    (2)现确定旋转后的点,然后依次连接即可,根据旋转前后三角形的面积不变,利用表格及勾股定理确定三角形的底和高,即可得出面积.
    (1)
    解:如图所示,点的坐标为;

    ,为无理数,符合题意;
    (2)
    如图所示:点的坐标,点的坐标为,
    ∵旋转180°后的的面积等于的面积,

    ∴,
    ∴的面积为4.
    【点睛】
    题目主要考查等腰三角形的定义及旋转图形的作法,理解题意,熟练掌握在坐标系中旋转图形的作法是解题关键.
    5、(1)EF、CD;(2)①;②;(3);(4)或
    【分析】
    (1)的半径为1,则的最长的弦长为2,根据两点的距离可得,进而即可求得答案;
    (2)①根据定义作出图形,根据轴对称的方法求得对称轴,反射线段经过对应圆心的中点,即可求得的坐标;②由①可得当时,yM,设当取得最大值时,过点作轴,根据题意,分别为沿直线y=x的方向向上平移一段距离S 后的对应点,则,根据余弦求得进而代入数值列出方程,解方程即可求得的最大值,进而求得的范围;
    (3)根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边三角形,连接,取的中点,过作的垂线,则即为反射轴,反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该圆的切线,求得半径为,根据圆的面积公式进行计算即可;
    (4)根据(2)的方法找到所在的圆心,当M点在圆上运动一周时,如图,取的中点,的中点,即的中点在以为圆心,半径为的圆上运动,进而即可求得反射轴l与y轴交点的纵坐标的取值范围
    【详解】
    (1)的半径为1,则的最长的弦长为2
    根据两点的距离可得

    故符合题意的“反射线段”有EF、CD;
    故答案为:EF、CD
    (2)①如图,过点作轴于点,连接

    A点坐标为(0,2),B点坐标为(1,1),
    ,且,
    的半径为1,
    ,且
    线段AB是⊙O的以直线l为对称轴的“反射线段”,,

    ②由①可得当时,yM

    如图,设当取得最大值时,过点作轴,根据题意,分别为沿直线y=x的方向向上平移一段距离S 后的对应点,则,



    过中点,作直线交轴于点,则即为反射轴

    yM,





    解得(舍)

    (3)

    的半径为1,则是等边三角形,
    根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边三角形,连接,取的中点,过作的垂线,则即为反射轴,
    反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该圆的切线



    当M点在圆上运动一周时,求反射轴l未经过的区域的面积为.
    (4)如图,根据(2)的方法找到所在的圆心,



    ,是等腰直角三角形
    ,


    当M点在圆上运动一周时,如图,取的中点,的中点,
    是的中位线
    ,
    即的中点在以为圆心,半径为的圆上运动
    若MN是⊙O的以直线l为对称轴的“反射线段”,则为的切线
    设与轴交于点


    同理可得

    反射轴l与y轴交点的纵坐标的取值范围为或
    【点睛】
    本题考查了中心对称与轴对称,圆的相关知识,切线的性质,三角形中位线定理,余弦的定义,掌握轴对称与中心对称并根据题意作出图形是解题的关键.

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试同步练习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步练习题,共33页。试卷主要包含了下列判断正确的个数有,下列说法正确的个数有,下列语句判断正确的是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试同步训练题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步训练题,共34页。

    沪科版九年级下册第24章 圆综合与测试课时训练:

    这是一份沪科版九年级下册第24章 圆综合与测试课时训练,共42页。试卷主要包含了如图,点A等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map