【真题汇编】2022年河北张家口市中考数学模拟定向训练 B卷(含答案及解析)
展开2022年河北张家口市中考数学模拟定向训练 B卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、无论a取什么值时,下列分式总有意义的是( )
A. B. C. D.
2、下列说法正确的是( ).
A.带正号的数是正数,带负号的数是负数.
B.一个数的相反数,不是正数,就是负数.
C.倒数等于本身的数有2个.
D.零除以任何数等于零.
3、实数a、b、c在数轴上的对应点的位置如图所示,下列式子中正确的有( )
①b+c>0;②a+b>a+c;③bc<ac;④ab>ac.
A.1个 B.2个 C.3个 D.4个
4、如图,已知于点B,于点A,.点E是的中点,则的长为( )
A.6 B. C.5 D.
5、化简的结果是( )
A.1 B. C. D.
6、已知等腰三角形的两边长满足+(b﹣5)2=0,那么这个等腰三角形的周长为( )
A.13 B.14 C.13或14 D.9
7、如图,在数轴上有三个点A、B、C,分别表示数,,5,现在点C不动,点A以每秒2个单位长度向点C运动,同时点B以每秒个单位长度向点C运动,则先到达点C的点为( )
A.点A B.点B C.同时到达 D.无法确定
8、下列变形中,正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
9、如图,在中,D,E分别是边,上的点,若,则的度数为( )
A. B. C. D.
10、若把分式中的x和y都扩大10倍,那么分式的值( )
A.扩大10倍 B.不变 C.缩小10倍 D.缩小20倍
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、比较大小(填“>”或“<”): __________.
2、若,则________.
3、关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是__.
4、在下列实数(每两个3之间依次多一个“1”),中,其中无理数是________.
5、如图,在高米,坡角为的楼梯表面铺地毯,地毯的长度至少需要________米.(精确到米)
三、解答题(5小题,每小题10分,共计50分)
1、已知直线与抛物线交于A,B两点(点A在点B的左侧),与抛物线的对称轴交于点P,点P与抛物线顶点Q的距离为2(点P在点Q的上方).
(1)求抛物线的解析式;
(2)直线与抛物线的另一个交点为M,抛物线上是否存在点N,使得?若存在,请求出点N的坐标;若不存在,请说明理由;
(3)过点A作x轴的平行线交抛物线于点C,请说明直线过定点,并求出定点坐标.
2、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数y=﹣1的性质及其应用的部分过程,请按要求完成下列各小题.
(1)请把下表补充完整,并在给出的图中补全该函数的大致图象;
x | …… | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | …… |
y | …… |
| ﹣ |
| 1.5 |
| 1.5 | 0 |
| ﹣ | …… |
(2)请根据这个函数的图象,写出该函数的一条性质 ;
(3)已知函数的图象如图所示,请你根据函数的图象,直接写出不等式的解集,(近似值保留一位小数,误差不超过0.2)
3、通过列表、描点、连线的方法画函数y=的图象.
4、综合与探究
如图,直线与轴,轴分别交于,两点,抛物线经过,两点,与轴的另一个交点为(点在点的左侧),抛物线的顶点为点.抛物线的对称轴与轴交于点.
(1)求抛物线的表达式及顶点的坐标;
(2)点M是线段上一动点,连接并延长交轴交于点,当时,求点的坐标;
(3)点是该抛物线上的一动点,设点的横坐标为,试判断是否存在这样的点,使,若存在,请直接写出的值;若不存在,请说明理由.
5、如图1,O为直线AB上一点,过点O作射线OC,,将一直角三角板()的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.
(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周,如图2,经过t秒后,OM恰好平分.
①t的值是_________;
②此时ON是否平分?说明理由;
(2)在(1)的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分?请说明理由;
(3)在(2)的基础上,经过多长时间,?请画图并说明理由.
-参考答案-
一、单选题
1、D
【分析】
根据分式有意义的条件是分母不等于零进行分析即可.
【详解】
解:A、当a=0时,分式无意义,故此选项错误;
B、当a=−1时,分式无意义,故此选项错误;
C、当a=−1时,分式无意义,故此选项错误;
D、无论a为何值,分式都有意义,故此选项正确;
故选D.
【点睛】
此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.
2、C
【分析】
利用有理数的定义判断即可得到结果.
【详解】
解:A、带正号的数不一定为正数,例如+(-2);带负号的数不一定为负数,例如-(-2),故错误;
B、一个数的相反数,不是正数,就是负数,例如0的相反数是0,故错误;
C、倒数等于本身的数有2个,是1和-1,正确;
D、零除以任何数(0除外)等于零,故错误;
故选C.
【点睛】
本题考查有理数的除法,以及正负数、倒数以及相反数,掌握它们的性质是解题的关键.
3、B
【详解】
试题解析:∵由数轴可得c<0<b<a,且a>|c|>b,
∴①b+c>0,应为b+c<0,故不正确;
②a+b>a+c,正确;
③bc<ac,应为bc>ac,故不正确;
④ab>ac,正确.
共2个正确.
故选B.
考点:实数与数轴.
4、B
【分析】
延长交于点F,根据已知条件证明,得出,根据勾股定理求出的长度,可得结果.
【详解】
如图,延长交于点F,
∵,
∴,
∴,
∵点E是的中点,
∴,
在和中,
∴,
∴,
∴,
在中,,
∵点E是的中点,
∴,
故选:B.
【点睛】
本题考查了全等三角形的判定与性质,勾股定理等知识点,熟练运用全等三角形的判定定理以及性质是解本题的关键.
5、D
【分析】
括号里通分化简,然后根据除以一个数等于乘以这个数的倒数计算即可.
【详解】
解:原式,
故选:D.
【点睛】
本题考查了分式的混合运算,熟知运算法则是解题的关键.
6、C
【分析】
首先依据非负数的性质求得a,b的值,然后得到三角形的三边长,接下来,利用三角形的三边关系进行验证,最后求得三角形的周长即可.
【详解】
解:根据题意得,a﹣4=0,b﹣5=0,
解得a=4,b=5,
①4是腰长时,三角形的三边分别为4、4、5,
∵4+4=8>5,
∴能组成三角形,周长=4+4+5=13,
②4是底边时,三角形的三边分别为4、5、5,
能组成三角形,周长=4+5+5=14,
所以,三角形的周长为13或14.
故选C.
【点睛】
本题主要考查的是非负数的性质、等腰三角形的定义,三角形的三边关系,利用三角形的三边关系进行验证是解题的关键.
7、A
【分析】
先分别计算出点A与点C之间的距离为10,点B与点C之间的距离为8.5,再分别计算出所用的时间.
【详解】
解:点A与点C之间的距离为:,
点B与点C之间的距离为:,
点A以每秒2个单位长度向点C运动,所用时间为(秒);
同时点B以每秒个单位长度向点C运动,所用时间为(秒);
故先到达点C的点为点A,
故选:A.
【点睛】
本题考查了数轴,解决本题的关键是计算出点A与点C,点B与点C之间的距离.
8、B
【分析】
根据等式的性质,对选项逐个判断即可.
【详解】
解:选项A,若,当时,不一定成立,故错误,不符合题意;
选项B,若,两边同时除以,可得,正确,符合题意;
选项C,将分母中的小数化为整数,得,故错误,不符合题意;
选项D,方程变形为,故错误,不符合题意;
故选B.
【点睛】
此题考查了等式的性质,熟练掌握等式的有关性质是解题的关键.
9、D
【分析】
根据,推出,再由,得到,利用直角三角形中两个锐角互余即可得出.
【详解】
∵,∠DEB+∠DEC=180°,
∴,
又∵,
∴
∴,
即
故选:D.
【点睛】
本题考查了全等三角形的性质,直角三角形两个锐角和等于90°,掌握全等的性质是解题的关键.
10、B
【分析】
把x和y都扩大10倍,根据分式的性质进行计算,可得答案.
【详解】
解:分式中的x和y都扩大10倍可得:,
∴分式的值不变,
故选B.
【点睛】
本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变.
二、填空题
1、<.
【分析】
根据两个负数比较大小,其绝对值大的反而小比较即可.
【详解】
解:∵ , , ,
∴ <.
故答案为:<.
【点睛】
本题考查有理数的大小比较,能熟记有理数的大小比较的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.
2、
【分析】
根据条件|m|=m+1进行分析,m的取值可分三种条件讨论,m为正数,m为负数,m为0,讨论可得m的值,代入计算即可.
【详解】
解:根据题意,可得m的取值有三种,分别是:
当m>0时,则可转换为m=m+1,此种情况不成立.
当m=0时,则可转换为0=0+1,此种情况不成立.
当m<0时,则可转换为-m=m+1,解得,m=.
将m的值代入,则可得(4m+1)2011=[4×()+1]2011=-1.
故答案为:-1.
【点睛】
本题考查了含绝对值符号的一元一次方程和代数式的求值.解题时,要注意采用分类讨论的数学思想.
3、m=4.
【详解】
分析:若一元二次方程有实根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.还要注意二次项系数不为0.
详解:∵关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,
∴△=4﹣8(m﹣5)≥0,且m﹣5≠0,
解得m≤5.5,且m≠5,
则m的最大整数解是m=4.
故答案为m=4.
点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0方程没有实数根.
4、(每两个3之间依次多一个“1”),
【分析】
无理数:即无限不循环小数,据此回答即可.
【详解】
解:,,
无理数有:(每两个3之间依次多一个“1”),
故答案为:(每两个3之间依次多一个“1”),.
【点睛】
此题考查了无理数的概念,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如,,(每两个之间一次多个)等形式.
5、
【分析】
首先利用锐角三角函数关系得出AC的长,再利用平移的性质得出地毯的长度.
【详解】
由题意可得:tan27°==≈0.51,解得:AC≈3.9,故AC+BC=3.9+2=5.9(m),即地毯的长度至少需要5.9米.
故答案为5.9.
【点睛】
本题主要考查了解直角三角形的应用,得出AC的长是解题的关键.
三、解答题
1、
(1)
(2)存在,或
(3),理由见解析
【分析】
(1)根据题意可得直线过定点,根据点P与抛物线顶点Q的距离为2(点P在点Q的上方),求得顶点坐标,根据顶点式求得的值,即可求得抛物线解析式;
(2)过点分别作轴的垂线,垂足分别为,设抛物线与轴的另一个交点为,连接,交轴于点,过点作交轴于点,交于点,求得点的坐标,证明,,即找到一个点,根据对称性求得直线的解析式,联立二次函数解析式找到另一个点;
(3)设,,则点坐标为,设直线的解析式为,求得解析式,进而求得,联立直线和二次函数解析式,根据一元二次方程根与系数的关系求得,代入直线解析式,根据解析式判断定点的坐标即可
(1)
,则当时,
则必过定点,
的对称轴为,顶点为
与抛物线的对称轴交于点P,则
点P与抛物线顶点Q的距离为2(点P在点Q的上方),
抛物线解析式为:
(2)
存在,或
直线的解析式为
联立直线与抛物线解析式
解得
即
如图,过点分别作轴的垂线,垂足分别为,连接,交轴于点,过点作交轴于点,交于点,
,
则此时点与点重合,
设直线的解析式为
则
解得
令,则
四边形是矩形
四边形是正方形
设直线的解析式分别为
则
解得
解析式为
联立
解得或
综上所述,或
(3)
设,,则点坐标为,
设直线的解析式为,
联立
过定点
【点睛】
本题考查了待定系数法求二次函数解析式,正切的定义,解直角三角形,正方形的性质,直线与二次函数交点问题,数形结合是解题的关键.
2、
(1)见解析
(2)函数图象是轴对称图形,它的对称轴为y轴
(3)-0.4<x<1或x>2
【分析】
(1)将x=-2,0,3分别代入解析式即可得y的值,再画出函数的图象;
(2)结合图象即可求得;
(3)根据图象求得即可.
(1)
解:补充完整下表为:
x | …… | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | …… |
y | …… |
| 1.5 | 4 | 1.5 | 0 | …… |
画出函数的图象如图:
(2)
该函数图象是轴对称图形,它的对称轴为y轴,
故答案为:函数图象是轴对称图形,它的对称轴为y轴.
(3)
由图象可知:不等式的解集为-0.4<x<1或x>2.
【点睛】
本题主要考查一次函数的图象和性质,一次函数与一元一次方程,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.
3、见解析
【分析】
首先列表求出图象上点的坐标,进而描点连线画出图象.
【详解】
解:列表得:
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | … |
y | … | -9 | -4 | -1 | 0 | -1 | -4 | -9 | … |
描点、连线.
【点睛】
本题主要是考查了利用列表描点连线法画二次函数图形,熟练掌握画函数图像的基本步骤,是求解本题的关键.
4、(1),;(2);(3)存在,的值为4或
【分析】
(1)分别求出两点坐标代入抛物线即可求得a、c的值,将抛物线化为顶点式,即可得顶点的坐标;
(2)作轴于点,可证∽,从而可得,代入,,可求得,代入可得,从而可得点的坐标;
(3)由,可得,由两点坐标可得,所以,过点P作PQ⊥AB,分点P在x轴上方和下方两种情况即可求解.
【详解】
(1)当时,得,
∴点的坐标为(0,4),
当时,得,解得:,
∴点的坐标为(6,0),
将两点坐标代入,得
解,得
∴抛物线线的表达式为
∵
∴顶点坐标为.
(2)作轴于点,
∵,,
∴∽.
∴.
∴.
∴
当时,
∴.
∴点的坐标为.
(3)∵,,
∴,
∵点的坐标为(6,0),点的坐标为(0,4),
∴,
∴,
过点P作PQ⊥AB,
当点P在x轴上方时,
解得m=4符合题意,
当点P在x轴下方时,
解得m=8符合题意,
∴存在,的值为4或.
【点睛】
本题考查了抛物线解析式的求法,抛物线的性质,三角形相似的判定及性质,三角函数的应用,解题的关键是准确作出辅助线,利用数形结合的思想列出相应关系式.
5、
(1)①5;②是,理由见解析
(2)5,理由见解析
(3)秒或秒,理由见解析
【分析】
(1)①由∠AOC的度数,求出∠COM的度数,根据互余可得出∠CON的度数,进而求出时间t;
②根据图形和题意得出∠AON+∠BOM=90°,∠CON+∠COM=90°,再根据∠BOM=∠COM,即可得出ON平分∠AOC;
(2)根据图形和题意得出∠AON+∠BOM=90°,∠CON=∠COM=45°,再根据转动速度从而得出答案;
(3)需要分两种情况,当射线OC在直线AB上方时,在直线下方时两种情况,再根据旋转建立方程即可.
【小题1】
解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,
∵∠AOC=30°,
∴∠BOC=2∠COM=150°,
∴∠COM=75°,
∴∠CON=15°,
∴∠AON=∠AOC-∠CON=30°-15°=15°,
∴∠AON=∠CON,
解得:t=15°÷3°=5;
故答案为:①5;
②是,理由如下:
由上可知,∠CON=∠AON=15°,
∴ON平分∠AOC;
【小题2】
经过5秒时,OC平分∠MON,理由如下:
∵∠AON+∠BOM=90°,∠CON=∠COM,
∵∠MON=90°,
∴∠CON=∠COM=45°,
∵三角板绕点O以每秒3°的速度顺时针旋转,射线OC也绕O点以每秒6°的速度顺时针旋转,
设∠AON为3t,∠AOC为30°+6t,
当OC平分∠MON时,∠CON=∠COM=45°,
∴∠AOC-∠AON=45°,
可得:30°+6t-3t=45°,
解得:t=5;
【小题3】
根据题意,有两种情况,当射线OC在直线AB上方时,如图4①,当射线OC在直线直线AB下方时,如图4②,
则有30°+6t+10°=180°,或30°+6t-10°=180°,
解得t=或,
∴经过秒或秒时,∠BOC=10°.
【点睛】
此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.
【真题汇编】2022年河北省新乐市中考数学模拟定向训练 B卷(含答案及解析): 这是一份【真题汇编】2022年河北省新乐市中考数学模拟定向训练 B卷(含答案及解析),共21页。试卷主要包含了在中,负数共有个.,把 写成省略括号后的算式为,若,则的值为等内容,欢迎下载使用。
【历年真题】2022年河北唐山遵化市中考数学模拟定向训练 B卷(含答案解析): 这是一份【历年真题】2022年河北唐山遵化市中考数学模拟定向训练 B卷(含答案解析),共28页。试卷主要包含了已知等腰三角形的两边长满足+,若分式的值为0,则x的值是等内容,欢迎下载使用。
【历年真题】2022年河北张家口市中考数学模拟定向训练 B卷(含答案详解): 这是一份【历年真题】2022年河北张家口市中考数学模拟定向训练 B卷(含答案详解),共29页。试卷主要包含了是-2的 .,方程的解为,某玩具店用6000元购进甲,若,则的值为,计算-1-1-1的结果是等内容,欢迎下载使用。