【高频真题解析】2022年河北邯郸永年区中考数学模拟考试 A卷(含详解)
展开
这是一份【高频真题解析】2022年河北邯郸永年区中考数学模拟考试 A卷(含详解),共23页。试卷主要包含了如图是三阶幻方的一部分,其每行,下列等式成立的是,计算12a2b4•÷的结果等于等内容,欢迎下载使用。
2022年河北邯郸永年区中考数学模拟考试 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列计算:① 0﹣(﹣5)=0+(﹣5)=﹣5; ② 5﹣3×4=5﹣12=﹣7;③ 4÷3×(﹣)=4÷(﹣1)=﹣4; ④ ﹣12﹣2×(﹣1)2=1+2=3.其中错误的有( )A.1个 B.2个 C.3个 D.4个2、下列说法中正确的个数是( )①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过一点有且仅有一条直线与己知直线平行;④两点之间的距离是两点间的线段;⑤若,则点为线段的中点;⑥不相交的两条直线叫做平行线。A.个 B.个 C.个 D.个3、下列命题与它的逆命题都为真命题的是( )A.已知非零实数x,如果为分式,那么它的倒数也是分式.B.如果x的相反数为7,那么x为-7.C.如果一个数能被8整除,那么这个数也能被4整除.D.如果两个数的和是偶数,那么它们都是偶数.4、如图是三阶幻方的一部分,其每行、每列、每条对角线上三个数字之和都相等,则对于这个幻方,下列说法错误的是( )A.每条对角线上三个数字之和等于B.三个空白方格中的数字之和等于C.是这九个数字中最大的数D.这九个数字之和等于5、下列等式成立的是( )A. B.C. D.6、已知∠A与∠B的和是90°,∠C与∠B互为补角,则∠C比∠A大( )A.180° B.135° C.90° D.45°7、已知三角形的一边长是6 cm,这条边上的高是(x+4)cm,要使这个三角形的面积不大于30 cm2,则x的取值范围是( )A.x>6 B.x≤6 C.x≥-4 D.-4<x≤68、某件商品先按成本价加价50%后标价,再以九折出售,售价为135元,若设这件商品的成本价是x元,根据题意,可得到的方程是( )A. B.C. D.9、计算12a2b4•(﹣)÷(﹣)的结果等于( )A.﹣9a B.9a C.﹣36a D.36a10、把 写成省略括号后的算式为 ( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,那么它的余角是________,它的补角是________.2、已知,则= .3、如图,在中,,F是边上的中点,则________1.(填“>”“=”或“<”)4、若一扇窗户打开后,用窗钩将其固定,主要运用的几何原理是_________.5、如图,是的弦,是上一点,交于点,连接,,若,,则的度数为________.三、解答题(5小题,每小题10分,共计50分)1、解方程:.2、已知直线与抛物线交于A,B两点(点A在点B的左侧),与抛物线的对称轴交于点P,点P与抛物线顶点Q的距离为2(点P在点Q的上方).(1)求抛物线的解析式;(2)直线与抛物线的另一个交点为M,抛物线上是否存在点N,使得?若存在,请求出点N的坐标;若不存在,请说明理由;(3)过点A作x轴的平行线交抛物线于点C,请说明直线过定点,并求出定点坐标.3、某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量(件)与销售单价(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:销售单价(元)406080日销售量(件)806040(1)求公司销售该商品获得的最大日利润;(2)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过元,在日销售量(件)与销售单价(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求的值.4、解方程:(1)(2)5、如图,二次函数的图象顶点坐标为(-1,-2),且过(1,0).(1)求该二次函数解析式;(2)当时,则函数值y得取值范围是 . -参考答案-一、单选题1、C【分析】根据有理数的减法法则可判断①;先算乘法、再算减法,可判断②;根据有理数的乘除运算法则可判断③;根据有理数的混合运算法则可判断④,进而可得答案.【详解】解:,所以①运算错误;,所以②运算正确;4÷3×(﹣)=4××(﹣)=﹣,所以③运算错误;﹣12﹣2×(﹣1)2=-1-2×1=-3,所以④运算错误.综上,运算错误的共有3个,故选:C.【点睛】本题考查了有理数的混合运算,属于基本题型,熟练掌握有理数的混合运算法则是解题关键.2、D【分析】本题属于基础应用题,只需学生熟练掌握平面图形的基本概念,即可完成.【详解】①两点之间的所有连线中,线段最短,正确;②相等的角不一定是对顶角,但对顶角相等,故本小题错误;③过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;④两点之间线段的长度,叫做这两点之间的距离,故本小题错误;⑤若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误;⑥在同一平面内,不相交的两条直线叫做平行线,故本小题错误;所以,正确的结论有①,共1个.故选D.【点睛】熟练掌握平面图形的基本概念3、B【分析】先判断原命题的真假,然后分别写出各命题的逆命题,再判断逆命题的真假.【详解】解:A. 的倒数是,不是分式,原命题是假命题,不符合题意;B. 如果x的相反数为7,那么x为-7是真命题,逆命题为:如果x为-7,那么x的相反数为7,是真命题,符合题意;C. 如果一个数能被8整除,那么这个数也能被4整除是真命题,逆命题为:如果一个数能被4整除,那么这个数也能被8整除,是假命题,不符合题意;D.因为两个奇数的和也是偶数,所以原命题是假命题,不符合题意;故选B.【点睛】本题主要考查命题的逆命题和命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4、B【分析】根据每行、每列、每条对角线上三个数字之和都相等,则由第1列三个已知数5+4+9=18可知每行、每列、每条对角线上三个数字之和为18,于是可分别求出未知的各数,从而对四个选项进行判断.【详解】∵每行、每列、每条对角线上三个数字之和都相等,而第1列:5+4+9=18,于是有5+b+3=18,9+a+3=18,得出a=6,b=10,从而可求出三个空格处的数为2、7、8,所以答案A、C、D正确,而2+7+8=17≠18,∴答案B错误,故选B.【点睛】本题考查的是数字推理问题,抓住条件利用一元一次方程进行逐一求解是本题的突破口.5、D【分析】根据分式的基本性质进行判断.【详解】解:A、分子、分母同时除以-1,则原式=,故本选项错误; B、分子、分母同时乘以-1,则原式=,故本选项错误; C、分子、分母同时除以a,则原式= ,故本选项错误; D、分子、分母同时乘以b,则原式=,故本选项正确.故选D.【点睛】本题考查了分式的基本性质.特别要注意:分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变.6、C【分析】根据补角的定义进行分析即可.【详解】解:∵∠A+∠B=90°,∠B+∠C=180°,∴∠C﹣∠A=90°,即∠C比∠A大90°,故选C.【点睛】考核知识点:补角.理解补角的数量关系是关键.7、D【解析】【分析】根据三角形面积公式列出不等式组,再解不等式组即可.【详解】由题意得:,解得:-4<x≤6.故选D.【点睛】本题考查了一元一次不等式组的应用.解题的关键是利用三角形的面积公式列出不等式组.8、A【分析】设这件商品的成本价为x元,售价=标价×90%,据此列方程.【详解】解:标价为,九折出售的价格为,可列方程为.故选:A.【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.9、D【分析】通过约分化简进行计算即可.【详解】原式=12a2b4•(﹣)·(﹣)=36a.故选D.【点睛】本题考点:分式的化简.10、D【分析】先把算式写成统一加号和的形式,再写成省略括号的算式即可.【详解】把统一加号和,再把写成省略括号后的算式为 5-3+1-5.故选:D.【点睛】本题考查有理数加减法统一加法的问题,掌握加减法运算的法则,会用减法法则把减法装化为加法,会写省略括号的算式是解题关键.二、填空题1、 【分析】根据余角、补角的性质即可求解.【详解】解:,故答案为,.【点睛】此题考查了补角和余角的性质,理解余角和补角的性质是解题的关键.2、.【解析】试题解析:设,则x=2k,y=3k,z=4k,则=.考点:分式的基本性质.3、<【分析】连接AE,先证明得出,根据三角形三边关系可得结果.【详解】如图,连接,在和中,∴,∴,在中,,∴,∵F是边上的中点,∴,∴,故答案为:<.【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,熟知全等三角形的判定定理与性质是解题的关键.4、三角形的稳定性【详解】一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是三角形的稳定性.故应填:三角形的稳定性5、【分析】设∠AOC=x°,根据圆周角定理得到∠B的度数,根据三角形的外角的性质列出方程,解方程得到答案.【详解】解:设∠AOC=x°,则∠B=x°,∵∠AOC=∠ODC+∠C,∠ODC=∠B+∠A,∴x=20°+30°+x, 解得x=100°. 故选A.【点睛】本题主要考查的是圆周角定理和三角形的外角的性质,掌握一条弧所对的圆周角等于这条弧所对的圆心角的一半是解题的关键.三、解答题1、【分析】方程两边同时乘以12,去分母后,依次计算即可.【详解】∵,去分母,得3(2x+1)-2(x-3)=12,去括号,得6x+3-2x+6=12,移项,得6x-2x=12-3-6,合并同类项,得4x=3,系数化为1,得x=.【点睛】本题考查了一元一次方程的解法,熟练掌握五步骤解一元一次方程是解题的关键.2、(1)(2)存在,或(3),理由见解析【分析】(1)根据题意可得直线过定点,根据点P与抛物线顶点Q的距离为2(点P在点Q的上方),求得顶点坐标,根据顶点式求得的值,即可求得抛物线解析式;(2)过点分别作轴的垂线,垂足分别为,设抛物线与轴的另一个交点为,连接,交轴于点,过点作交轴于点,交于点,求得点的坐标,证明,,即找到一个点,根据对称性求得直线的解析式,联立二次函数解析式找到另一个点;(3)设,,则点坐标为,设直线的解析式为,求得解析式,进而求得,联立直线和二次函数解析式,根据一元二次方程根与系数的关系求得,代入直线解析式,根据解析式判断定点的坐标即可(1),则当时,则必过定点,的对称轴为,顶点为与抛物线的对称轴交于点P,则点P与抛物线顶点Q的距离为2(点P在点Q的上方),抛物线解析式为:(2)存在,或直线的解析式为联立直线与抛物线解析式解得即如图,过点分别作轴的垂线,垂足分别为,连接,交轴于点,过点作交轴于点,交于点,,则此时点与点重合,设直线的解析式为则解得令,则四边形是矩形四边形是正方形设直线的解析式分别为则解得解析式为联立解得或综上所述,或(3)设,,则点坐标为,设直线的解析式为,联立过定点【点睛】本题考查了待定系数法求二次函数解析式,正切的定义,解直角三角形,正方形的性质,直线与二次函数交点问题,数形结合是解题的关键.3、(1)当销售单价是75元时,最大日利润是2025元;(2)【分析】(1)先求解商品的日销售量(件)与销售单价(元)的函数关系式,再利用该商品获得的最大日利润等于每件商品的利润乘以销售数量建立二次函数的关系式,再利用二次函数的性质可得答案;(2)先利用该商品获得的最大日利润等于每件商品的利润乘以销售数量建立二次函数的关系式,再求解当利润为元时的值,再分两种情况讨论即可.(1)解:设商品的日销售量(件)与销售单价(元)是 解得: 所以商品的日销售量(件)与销售单价(元)是 设公司销售该商品获得的日利润为元,,∵,,∴,∵,∴抛物线开口向下,函数有最大值,∴当时,,答:当销售单价是75元时,最大日利润是2025元.(2)解:,当时,,解得,,∵,∴有两种情况,①时,在对称轴左侧,随的增大而增大,∴当时,,②时,在范围内,∴这种情况不成立,∴.【点睛】本题考查的是利用待定系数法求解一次函数的解析式,列二次函数的关系式,二次函数的性质,一元二次方程的解法,掌握“该商品获得的最大日利润等于每件商品的利润乘以销售数量”是解本题的关键.4、(1)(2)【分析】(1)方程去括号、移项合并同类项,把x的系数化为1,即可求出解;(2)方程去分母、去括号、移项合并同类项,把x的系数化为1,即可求出解.(1)解:去括号得:移项、合并同类项得:系数化为1,得:(2)解:去分母得:去括号得:移项、合并同类项得:系数化为1,得:【点睛】本题考查解一元一次方程,解题的关键是掌握一元一次方程的解法,解一元一次方程常见的过程有:去分母、去括号、移项、合并同类项、系数化为1等.5、(1);(2).【分析】(1)首先设出抛物线的顶点式表达式为,然后将(1,0)代入求解即可;(2)根据二次函数的增减性和对称性可得当,取最大值,当,取最小值,然后代入求解即可.【详解】解:(1)由抛物线顶点式表达式得:将(1,0)代入得:,解得:∴二次函数解析式为:;(2)∵,∴抛物线对称轴为:,开口向上,∵,,,∴当,取最大值=,当,取最小值-2,∴当时,函数值y得取值范围是:.【点睛】此题考查了待定系数法求二次函数表达式,二次函数的图像和性质,解题的关键是熟练掌握待定系数法求二次函数表达式,二次函数的图像和性质.
相关试卷
这是一份【难点解析】2022年邯郸永年区中考数学模拟专项测评 A卷(含详解),共26页。试卷主要包含了若,则的值为,已知,,,则等内容,欢迎下载使用。
这是一份【高频真题解析】2022年河北省邯郸市中考数学真题模拟测评 (A)卷(含答案详解),共19页。试卷主要包含了下列说法等内容,欢迎下载使用。
这是一份【高频真题解析】2022年河北省邯郸市中考数学模拟真题 (B)卷(含答案详解),共26页。试卷主要包含了在,,,中,最大的是,若a<0,则= .,已知,,,则,下列各数中,是无理数的是等内容,欢迎下载使用。