初中数学沪科版九年级下册第25章 投影与视图综合与测试课时训练
展开沪科版九年级数学下册第25章投影与视图同步练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,由5个完全一样的小正方体组成的几何体的左视图是( )
A. B.
C. D.
2、如图的几何体是由一些小正方体组合而成的,则这个几何体的左视图是( )
A. B.
C. D.
3、下列立体图形的主视图是( )
A. B. C. D.
4、如图是由4个相同的正方体组成的立体图形,它的左视图是( )
A. B. C. D.
5、如图是由6个完全相同的小正方体组成的立体图形,这个立体图形的三视图中( )
A.主视图和俯视图相同 B.主视图和左视图相同
C.俯视图和俯视图相同 D.三个视图都相同
6、由6个大小相同的正方体搭成的几何体如图所示,则它的三种视图中,面积一样的是( )
A.主视图与俯视图 B.主视图与左视图
C.俯视图与左视图 D.主视图、左视图和俯视图
7、下面图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是( )
A.四棱柱 B.四棱锥 C.圆柱 D.圆锥
8、如图所示的几何体的俯视图是( )
A. B. C. D.
9、如图所示的工件中,该几何体的俯视图是( )
A. B. C. D.
10、如图,该几何体的俯视图是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个几何体由若干大小相同的小立方体搭成,下图分别是从它的正面、上面看到的形状图,该几何体最多用m个小立方体搭成,最少用n小立方体搭成,则m+n=_____.
2、一个零件的主视图、左视图、俯视图如图所示(尺寸单位:厘米),这个零件的表面积是_______cm2.
3、如图是某圆柱体果罐,它的主视图是边长为的正方形,该果罐侧面积为_____.
4、如图,用小木块搭一个几何体,它的主视图和俯视图如图所示.问:最少需要_________个小正方体木块,最多需要_________个小正方体木块.
5、一个“粮仓”的三视图如图所示(单位:m),则它的体积是____
三、解答题(5小题,每小题10分,共计50分)
1、如图是由10个大小相同的小立方体搭建的几何体,其中每个小立方体的棱长为1厘米.
(1)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图;
(2)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加 个小正方体(直接填空).
2、如图是一个由几个小正方块所搭成的几何体从上面看到的形状图,每个小正方形边长为1,小正方形中的数字表示在该位置的小正方块的个数,请在右边的方格中画出这个几何体从正面和左面看到的形状图,并求出这个几何体的表面积.
3、已知下图为一几何体从三个方向看到的形状图;
(1)写出这个几何体的名称;
(2)画出它的表面展开图;
(3)根据图中所给的数据,求这个几何体的表面积.(结果保留)
4、小华在不同时间于天安门前拍了几幅照片,下面哪幅照片是在下午拍摄的?
5、如图,是由一些大小相同的小正方体组合成的简单几同体,请在下面方格纸中分别画出从它的左面和上面看到的形状图.
-参考答案-
一、单选题
1、B
【分析】
根据从左边看得到的图形是左视图,可得答案.
【详解】
解:从从左边看有2列两层,2列从左到右分别有2、1个小正方形,
故选:B.
【点睛】
本题考查了简单组合体的三视图,解题的关键是从左边看得到的图形是左视图.
2、B
【分析】
根据左视图是从左面看得到的图形,可得答案.
【详解】
解:从左边看,上面一层是一个正方形,下面一层是两个正方形,
故选B
【点睛】
本题考查了简单组合体的三视图,从左面看得到的图形是左视图,掌握三视图的有关定义是解题的关键.
3、A
【分析】
主视图是从正面所看到的图形,根据定义和立体图形即可得出选项.
【详解】
解:主视图是从正面所看到的图形,是:
故选:A
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
4、A
【分析】
从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出左视图图形即可.
【详解】
从左面看所得到的图形为A选项中的图形.
故选A
【点睛】
本题考查了几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.
5、B
【分析】
主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.
【详解】
解:主视图和左视图相同,均有三列,小正方形的个数分别为1、2、1;
俯视图也有三列,但小正方形的个数为1、3、1.
故选:B.
【点睛】
本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提,画三视图时应注意“长对正,宽相等、高平齐”.
6、B
【分析】
根据简单几何体的三视图解答即可.
【详解】
解:该几何体的三视图如图所示:
, ,
由三视图可知,面积一样的是主视图与左视图,
故选:B.
【点睛】
本题考查简单几何体的三视图,熟知三视图的特点是解答的关键.
7、C
【分析】
根据三视图即可完成.
【详解】
此几何体为一个圆柱
故选:C.
【点睛】
本题考查由三视图还原几何体,既要考虑各视图的形状,还要把各视图的情况综合考虑才能得到几何体的形状.
8、D
【分析】
根据从上面看得到的图形是俯视图,可得答案.
【详解】
从上面看得到的图形是
故选D
【点睛】
本题考查了三视图的知识,掌握从上边看得到的图形是俯视图是关键.
9、B
【分析】
根据从上边看得到的图形是俯视图,可得答案.
【详解】
解:从上边看是一个同心圆,外圆是实线,内圆是虚线,
故选:B.
【点睛】
本题考查了简单组合体的三视图,解题关键是掌握从上边看得到的图形是俯视图.
10、A
【分析】
俯视图,从上面看到的平面图形,根据定义可得答案.
【详解】
解:从上面看这个几何体看到的是三个长方形,
所以俯视图是:
故选A
【点睛】
本题考查的是三视图,注意能看到的棱都要画成实线,掌握“三视图中的俯视图”是解本题的关键.
二、填空题
1、17
【分析】
从俯视图中可以看出最底层小立方块的个数及形状,从主视图可以看出每一层小立方块的层数和个数,进而可得答案.
【详解】
解:如图,
m=2+2+2+2+2=10,n=2+2+1+1+1=7,
∴m+n=10+7=17,
故答案为:17.
【点睛】
此题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.
2、200π
【分析】
根据三视图可得这个零件是圆柱体,根据表面积等于侧面积+上下两个底面的面积,可得答案.
【详解】
解:由三视图可得这个零件是圆柱体,
表面积是:π×52×2+15×π×10=200π(cm2),
故答案为:200π.
【点睛】
此题主要考查三视图的应用,解题的关键是根据图形特点得到这个零件是圆柱体.
3、
【分析】
根据圆柱体的主视图为边长为10cm的正方形,得到圆柱的底面直径和高,从而计算侧面积.
【详解】
解:∵果罐的主视图是边长为10cm的正方形,为圆柱体,
∴圆柱体的底面直径和高为10cm,
∴侧面积为=,
故答案为:.
【点睛】
本题考查了几何体的三视图,解题的关键是根据三视图得到几何体的相关数据.
4、10 16
【分析】
综合三视图,这个几何体中底层最多有3+3+1=7个小正方体,最少也有7个小正方体,第二层最多有2×3=6个小正方体,最少有2个小正方体,第三层最多有3个小正方体,最少有1个小正方体,因此这个几何体最少需要7+2+1=10个小正方体,最多需要7+6+3=16个小正方体木块.
【详解】
解:综合三视图的知识,该几何体底面最多有7个小正方形,最少也是7个小正方形,第二层最多有6个小正方形,最少有2个,而第三层最多有3个小正方形,最少有1个,
故这个几何体最少有10个小正方形,最多有16个,
故答案为:10,16.
【点睛】
本题要根据最多和最少两种情况分别进行讨论,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”得出结果.
5、
【分析】
根据三视图可知该几何体为圆锥和圆柱的结合体,进而根据三视图中的数据计算体积即可.
【详解】
解:观察发现该几何体为圆锥和圆柱的结合体,
其体积为:,
故答案为:
【点睛】
本题考查了根据三视图计算几何体的体积,由三视图还原几何题是解题的关键.
三、解答题
1、(1)见解析;(2)4
【分析】
(1)主视图有3列,每列小正方形数目分别为3,1,2;左视图3列,每列小正方形数目分别为3,2,1;俯视图有3列,每行小正方形数目分别为3,2,1;
(2)保持俯视图和左视图不变,得到最多可得到小正方形的个数,与原图形比较即可得出添加的小正方形个数.
【详解】
(1)如图所示:
(2)若保持俯视图和左视图不变,则做多可有多少个小正方形如图:
与原图比较,则每列小正方形添加数目分别:0+3+1=4(个)
故答案为:4
【点睛】
本题考查作图−三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.
2、图见解析,28
【分析】
从正面看有三列,看到的正方形的个数分别为1,3,1,从左边看有两列,看到的正方形的个数分别为2,3,从而可画出主视图与左视图,再根据三种视图看到的正方形的数量乘以2,从而可计算表面积.
【详解】
解:从正面和左面看到的形状图如下图
表面积
【点睛】
本题考查的是根据俯视图还原几何体,同时考查画正视图与左视图,几何体的表面积,掌握三种视图的含义是解题的关键.
3、(1)圆柱体;(2)见解析;(3)
【分析】
(1)根据三视图的特征即可得出几何体;
(2)根据圆柱体的特征,侧面展开为一个长方形,底面为两个圆,即可画出;
(3)根据三视图可得:展开图中圆的直径为8,长方形的长为16,根据圆柱表面积的计算方法即可求得结果.
【详解】
解:
(1)根据题目中已知的三视图符合圆柱体的三视图特征,
故这个几何体为圆柱;
(2)表面展开图如图所示:
(3)展开图圆的周长为:;
展开图圆的面积为:;
∴这个几何体的表面积为:
,
∴这个几何体的表面积为.
【点睛】
题目主要考查三视图、几何体的侧面展开图及几何体的表面积计算方法,理解、看懂三视图是解题关键.
4、右边一幅照片是下午拍摄的
【分析】
根据人和影子的位置,结合投影的概念,分别判断即可得到正确答案.
【详解】
右边一幅照片是下午拍摄的.因为天安门坐北朝南,由人影在人身后偏右,推知太阳在西南方向,此时是下午时间.
【点睛】
本题考查投影的概念,能够结合物体和影子的位置进行准确判断是解此类题的关键.
5、图见解析.
【分析】
根据左视图和俯视图的画法即可得.
【详解】
解:画图如下:
【点睛】
本题考查了左视图和俯视图,熟练掌握左视图(是指从左面观察物体所得到的图形)和俯视图(是指从上面观察物体所得到的图形)的画法是解题关键.
初中数学沪科版九年级下册第25章 投影与视图综合与测试课时练习: 这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试课时练习,共19页。试卷主要包含了如图,该几何体的主视图是,如图所示的几何体的左视图是,如图所示的几何体的俯视图是等内容,欢迎下载使用。
沪科版九年级下册第25章 投影与视图综合与测试习题: 这是一份沪科版九年级下册第25章 投影与视图综合与测试习题,共18页。试卷主要包含了如图所示的几何体的俯视图是,如图所示几何体的左视图是,如图所示的几何体的主视图为等内容,欢迎下载使用。
沪科版九年级下册第25章 投影与视图综合与测试课时练习: 这是一份沪科版九年级下册第25章 投影与视图综合与测试课时练习,共19页。试卷主要包含了如图几何体的主视图是等内容,欢迎下载使用。