初中数学沪科版九年级下册第25章 投影与视图综合与测试同步练习题
展开沪科版九年级数学下册第25章投影与视图章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,几何体的左视图是( )
A. B. C. D.
2、如图是由5个相同的小正方体搭成的几何体,它的左视图是( ).
A. B. C. D.
3、如图是由4个相同的小正方体组成的一个几何体,则从正面看到的平面图形是( )
A. B.
C. D.
4、如图是由6个同样大小的正方体摆成,将标有“1”的这个正方体去掉,所得几何体( )
A.俯视图不变,左视图不变 B.主视图改变,左视图改变
C.俯视图改变,主视图改变 D.主视图不变,左视图改变
5、如图,由一个圆柱体和一个长方体组成的几何体,其左视图是( )
A. B. C. D.
6、如图是由5个完全相同的小正方体组成的立体图形,这个立体图形的主视图是( )
A. B.C. D.
7、如图是由几个大小相同的小正方体搭成的几何体,若去掉1号小正方体,则下列说法正确的是( )
A.左视图和俯视图不变 B.主视图和左视图不变
C.主视图和俯视图不变 D.都不变
8、下面是由一些完全相同的小立方块搭成的几何体从三个方向看到的形状图.搭成这个几何体所用的小立方块的个数是( )
A.个 B.个 C.个 D.个
9、如图所示,沿正方体相邻的三条棱的中点截掉一个角,则它的左视图是( )
A. B.
C. D.
10、四个相同的小正方体组成的立体图形如图所示,它的主视图为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个立体图形,从正面看到的形状是,从左面看到的形状图是.搭这样的立体图形,最少需要________个小正方体,最多可以有________个正方体.
2、路灯下行人的影子属于______投影.(填“平行”或“中心”)
3、如图是一个几何体的三视图(图中尺寸单位:),根据图中所示数据计算该几何体的底面周长为______.
4、若干个小正方体组成一个几何体,从正面和左面看都是如图所示的图形, 则需要这样小正方体至少______块.
5、如图是由6个大小相同的小正方体拼成的几何体,若去掉最左面的小正方体,则视图不发生改变的是________(填主视图、左视图或俯视图)
三、解答题(5小题,每小题10分,共计50分)
1、图①是由若干个完全相同的小正方体组成的一个几何体.请画出这个几何体从左边看和从上面看得到的图形.
2、请用线把图中各物体与它们的投影连接起来.
3、如图是由若干个完全相同的小正方体堆成的几何体.
(1)图中有几个小正方体;
(2)画出该几何体的三视图;
4、根据要求完成下列题目.
(1)图中有_____块小正方体.
(2)请在方格纸中分别画出它的左视图和俯视图(画出的图都用铅笔涂上阴影).
(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在下图方格中所画的图一致,则这样的几何体最少要____个小正方体,最多要____个小正方体.
5、分别画出图中两个几何体(其中第2个几何体是两个高不相等的圆锥组成的组合体)的三视图.
-参考答案-
一、单选题
1、C
【分析】
找到从左面看所得到的图形,比较即可.
【详解】
解:观察可知,从物体的左边看是一个竖长横短的长方形,由于右边有一条横向棱被遮挡看不见,画为虚线,如图所示的几何体的左视图是: .
故选C.
【点睛】
本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
2、B
【分析】
找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.
【详解】
从左面看,第一层有2个正方形,第二层左侧有1个正方形.
故选:B.
【点睛】
本题考查了三视图的知识,熟知左视图是从物体的左面看得到的视图是解答本题的关键.
3、B
【分析】
根据图形特点,分别得出从正面看每一列正方形的个数,即可得出正面看到的平面图形.
【详解】
解:从正面看,有三列,第一列有一个正方形,第二列有一个正方形,第三列有两个个正方形,从正面看,有两行,第一行有一个正方形,第二行有三个正方形,
故选B.
【点睛】
本题考查从不同方向看几何体.做此类题,最好是逐列分析每一列中正方形的个数然后组合即可.
4、A
【分析】
根据几何体的三视图判断即可;
【详解】
根据已知图形,去掉标有“1”的这个正方体,主视图改变,俯视图和左视图不变;
故选A.
【点睛】
本题主要考查了几何体三视图的应用,准确分析判断是解题的关键.
5、A
【分析】
从左边看过去:可以看到上下两个宽度相同的长方形,从而可以得到左视图.
【详解】
解:从左边看过去:可以看到上下两个宽度相同的长方形,
所以一个圆柱体和一个长方体组成的几何体,其左视图是A选项中的图形,
故选A
【点睛】
本题考查的是三视图,掌握“三视图中的左视图”是解本题的关键,注意的是能看到的棱要以实线来体现,看不见的棱要以虚线来体现.
6、B
【分析】
从正面看到的平面图形是主视图,根据主视图的含义逐一判断即可.
【详解】
解:从正面可以看到2行3列的小正方形图形,第1行1个正方形,第2行3个正方形,按1,2,1的方式排列,
所以主视图是B,
故选B
【点睛】
本题考查的是三视图,掌握识别主视图是解本题的关键,注意的是能看到的棱都要画成实线,看不到的棱画成虚线.
7、A
【分析】
根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,再从看到的小正方形的个数与排列方式两个方面逐一分析可得答案.
【详解】
解:若去掉1号小正方体, 主视图一定变化,主视图中最右边的一列由两个小正方形变为一个,
从上面看过去,看到的小正方形的个数与排列方式不变,所以俯视图不变,
从左边看过去,看到的小正方形的个数与排列方式不变; 所以左视图不变,
所以A符合题意,B,C,D不符合题意;
故选:A.
【点睛】
本题考查的是由小正方体堆砌而成的图形的三视图,掌握“三视图的含义”是解本题的关键.
8、D
【分析】
从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.
【详解】
解:综合主视图,俯视图,左视图,底层有5个正方体,第二层有1个正方体,所以搭成这个几何体所用的小立方块的个数是6,
故选D.
【点睛】
考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.
9、C
【分析】
根据从左边看,首先看的见的部分是一个正方形,然后在右上角有截面的一条线看不见,要用虚线表示,由此求解即可
【详解】
解:由题意得:从左边看,首先看的见的部分是一个正方形,然后在右上角有截面的一条线看不见,要用虚线表示,
故选C.
【点睛】
本题主要考查了几何体的三视图,解题的关键在于能够熟练掌握三视图的定义.
10、A
【分析】
根据几何体的三视图解答即可.
【详解】
根据立体图形得到:
主视图为:,
左视图为:,
俯视图为:,
故选:
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
二、填空题
1、6 10
【分析】
根据题中所给的正面的形状和左面的形状即可得.
【详解】
解:根据题中所给的正面的形状和左面的形状可知,最少需要6个,将小正方体横着摆5个,再在任意一个小正方体的后面放一个小正方体;最多需要10个,将小正方体横着摆5个,再在每一个小正方体的后面放一个小正方体;
故答案为:6,10.
【点睛】
本题考查了三视图,解题的关键是根据三视图得出立体图形.
2、中心
【分析】
根据中心投影的概念填写即可.中心投影是指把光由一点向外散射形成的投影.
【详解】
解:路灯发出的光线可以看成是从一点发出的光线,像这样的光线所形成的投影叫做中心投影,故路灯下人的影子是中心投影.
故答案为:中心.
【点睛】
本题主要考查了中心投影的概念,做题的关键是熟练掌握中心投影的概念,区别中心投影和平行投影概念.
3、4πcm.
【分析】
根据主视图是等腰三角形,利用等腰三角形的性质,勾股定理求得底边的长,这就是圆锥底面圆的直径,计算周长即可.
【详解】
如图,根据主视图的意义,得三角形是等腰三角形,
∴三角形ABC是直角三角形,
BC==2,
∴底面圆的周长为:2πr=4πcm.
故答案为:4πcm.
【点睛】
本题考查了几何体的三视图,熟练掌握圆锥的三视图及其各视图的意义是解题的关键.
4、5
【分析】
画出最少时俯视图即可解决问题.
【详解】
解:观察主视图和左视图可知这个几何体的小正方体的个数最少时,俯视图如图所示.
2+1+2=5,
故答案为5.
【点睛】
本题考查了三视图.从正面看,所得到的图形是主视图;从左面看,所得到的图形是左视图;从上面看,所得到的图形是俯视图.
5、左视图
【分析】
画出原立体图形的三视图,与去掉小正方体的立体图形与三视图,对比即可得出答案.
【详解】
解:未去掉小正方形的立体图形的三视图为:
,
去掉最左面的小正方体后立体图形变为:
其三视图,
发现其主视图与俯视图都发生改变,
只有左视图不发生改变.
故答案为:左视图.
【点睛】
本题考查简单组合体的三视图,减少一个小正方体的组合体的三视图的变化,掌握简单组合体的三视图是解题关键.
三、解答题
1、见解析
【分析】
由已知条件可知,左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方数形数目分别为3,2,1,据此可画出图形.
【详解】
解:如图所示,
【点睛】
本题考查几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字.
2、见解析
【分析】
根据正投影的定义一一判断即可.
【详解】
解:上面一行由左至右第1~4个物体,分别与下面一行由左起第3,4,2,1的投影对应.
连线如图所示.
【点睛】
本题考查正投影,理解投影的意义是解题的关键.
3、(1)10;(2)见解析
【分析】
(1)分别数出每层的小正方体的个数并相加即可;
(2)按要求画出三视图即可.
【详解】
(1)1+3+6=10(个)
即图中共有10个小正方体
(2)所画的三视图如下:
【点睛】
本题主要考查了三视图、求几何体的小正方体的个数,要求较好的空间想象能力.
4、(1)6;(2)见解析;(3)5,7
【分析】
(1)根据图形知图形的层数及各层的块数,相加即得;
(2)根据三视图的画法解答;
(3)最少时只能将竖列的两个的最上一个去掉,最多时在两个的最上加一个.
【详解】
解:由图知,图形共有3层,最下层有3块小正方体,中间一层有2块,最上一层有1块,
∴图中共有1+2+3=6块小正方体,
故答案为:6;
(2)如图:
(3)如图,用小正方体搭一几何体,使得它的俯视图和左视图与你在下图方格中所画的图一致,则这样的几何体最少要5个,最多需要7个,
故答案为:5,7.
【点睛】
此题考查画小正方体构成的立体图形的三视图,数小正方体的个数,正确掌握立体图形的三视图的画法是解题的关键.
5、见解析
【分析】
(1)从正面看得到的图形是三角形,从左面看得到的图形是长方形,从上面看得到的图形是中间有竖线的长方形;
(2)从正面和左面看是上下两个不同的等腰三角形;从上面看是一个带圆心的圆.
【详解】
解:(1)如图所示:
(2)如图所示:
【点睛】
本题考查了作图-三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线.
初中数学沪科版九年级下册第25章 投影与视图综合与测试课时作业: 这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试课时作业,共21页。试卷主要包含了如图是下列哪个立体图形的主视图,如图,该几何体的俯视图是,如图所示的几何体的主视图是等内容,欢迎下载使用。
沪科版第24章 圆综合与测试课后练习题: 这是一份沪科版第24章 圆综合与测试课后练习题,共32页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
初中数学沪科版九年级下册第26章 概率初步综合与测试课后复习题: 这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课后复习题,共19页。试卷主要包含了有两个事件,事件,在一个不透明的布袋中,红色,下列事件中是不可能事件的是等内容,欢迎下载使用。