初中数学沪科版九年级下册第25章 投影与视图综合与测试习题
展开这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试习题,共19页。试卷主要包含了如图所示,该几何体的俯视图是,如图所示的几何体的左视图是等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图是一个几何体的实物图,则其主视图是( )
A. B. C. D.
2、如图所示几何体的左视图是( )
A. B.
C. D.
3、下列物体的左视图是圆的为( )
A.足球 B. 水杯
C. 圣诞帽 D. 鱼缸
4、用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,则最少需要小立方块的个数为( )
A.6 B.7 C.10 D.1
5、如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的俯视图为( )
A. B.
C. D.
6、如图是由5个大小相同的小正方体组成的几何体,则它的俯视图是( )
A. B.
C. D.
7、如图所示,该几何体的俯视图是
A. B.
C. D.
8、如图所示的几何体的左视图是( )
A. B.
C. D.
9、如图的几何体是由一些小正方体组合而成的,则这个几何体的左视图是( )
A. B.
C. D.
10、如图,由5个完全一样的小正方体组成的几何体的左视图是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、用一些完全相同的正方体木块搭几何体,从其正面和上面看到的形状图如图所示,则搭成这个几何体所用正方体木块的个数最少为__________.
2、用棱长为1cm的小正方体,搭成如图所示的几何体,则它的表面积为_____cm2.
3、如图是某圆柱体果罐,它的主视图是边长为的正方形,该果罐侧面积为_____.
4、一个圆柱体的三视图如图所示,根据图中数据计算圆柱的体积为___________.(答案含)
5、一空间几何体的三视图如图所示,则这个几何体的表面积是________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在水平地面上,有一盏垂直于地面的路灯AB,在路灯前方竖立有一木杆CD.已知木杆长CD=2.5米,木杆与路灯的距离BC=5米,并且在D点测得灯源A的仰角为39°,请在图中画出木杆CD在灯光下的影子(用线段表示),并求出影长.(结果保留1位小数,参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.8)
2、如图是由10个大小相同的小立方体搭建的几何体,其中每个小立方体的棱长为1厘米.
(1)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图;
(2)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加 个小正方体(直接填空).
3、如图,是由若干个完全相同的棱长为1的小正方体组成的一个几何体.
(1)请画出这个几何体的三视图;
(2)该几何体的表面积(含下底面)为 ;
(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和左视图不变,那么最多可以再添加 个小正方体.
4、如图是用10块完全相同的小正方体搭成的几何体.
(1)请在空白的方格中分别画出从正面、从左面、从上面看到的所搭几何体的形状图;
(2)若保持从正面和从上面看到的形状图不变,最多还可以再搭 块小正方体.
5、一个几何体的三个视图如图所示(单位:cm).
(1)写出这个几何体的名称: ;
(2)若其俯视图为正方形,根据图中数据计算这个几何体的表面积.
-参考答案-
一、单选题
1、C
【分析】
找到从正面看所得到的图形即可.
【详解】
解:从正面看可得到一个矩形和一个下底和矩形相邻的梯形的组合图.
故选:C.
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
2、D
【分析】
找到从左面看所得到的图形即可,注意所有的看到的棱都变现在左视图中.
【详解】
解:从左视图看,易得到一个矩形,矩形中有一条横行的虚线,
故选:D
【点睛】
本题考查简单组合体的三视图,解题的关键是理解三视图的定义,属于中考常考题型.
3、A
【分析】
根据左视图是指从物体左面向右面正投影得到的投影图,即可求解.
【详解】
解:A、左视图为圆,故本选项符合题意;
B、左视图为长方形,故本选项不符合题意;
C、左视图为三角形,故本选项不符合题意;
D、左视图为长方形,故本选项不符合题意;
故选:A
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
4、C
【分析】
从主视图和左视图考虑几何体的形状,从俯视图看出几何体的小立方块最少与最多的数目,利用口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”求解即可.
【详解】
解:由主视图可知,它自下而上共有3列,第一列3块,第二列2块,第三列1块.
由俯视图可知,它自左而右共有3列,第一列与第二列各3块,第三列1块,从空中俯视的块数只要最底层有一块即可.
因此,综合两图可知这个几何体的形状不能确定;并且最少时为第一列中有一个三层,其余为一层,第二列中有一个二层,其余为一层,第三列一层,共10块.
故选:C.
【点睛】
题目主要考查对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解题关键.
5、C
【分析】
先根据主视图可得出观察这个立体图形的正面,再根据俯视图的定义(从上面观察物体所得到的图形叫做俯视图)即可得.
【详解】
解:由题意得:观察这个立体图形的正面如下:
则它的俯视图为
故选:C.
【点睛】
本题考查了三视图,掌握理解俯视图的定义是解题关键.
6、C
【分析】
根据几何体的结构特征及俯视图可直接进行排除选项.
【详解】
解:如图是由5个大小相同的小正方体组成的几何体,则它的俯视图是;
故选C.
【点睛】
本题主要考查从不同方向看几何体,熟练掌握几何体的特征是解题的关键.
7、D
【分析】
根据俯视图是从物体上面向下面正投影得到的投影图,即可求解.
【详解】
解:根据题意得:D选项是该几何体的俯视图.
故选:D
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
8、B
【分析】
根据左视图是从左面看到的图形判定则可.
【详解】
解:从左边看,是一个正方形,正方形的右上角有一条虚线.
故选:B.
【点睛】
本题主要考查了几何体的三种视图和学生的空间想象能力,正确掌握观察角度是解题关键.
9、B
【分析】
根据左视图是从左面看得到的图形,可得答案.
【详解】
解:从左边看,上面一层是一个正方形,下面一层是两个正方形,
故选B
【点睛】
本题考查了简单组合体的三视图,从左面看得到的图形是左视图,掌握三视图的有关定义是解题的关键.
10、B
【分析】
根据从左边看得到的图形是左视图,可得答案.
【详解】
解:从从左边看有2列两层,2列从左到右分别有2、1个小正方形,
故选:B.
【点睛】
本题考查了简单组合体的三视图,解题的关键是从左边看得到的图形是左视图.
二、填空题
1、7
【分析】
由主视图和左视图确定左视图的形状,再判断最少的正方体的个数即可.
【详解】
解:由题中所给出的主视图知物体共3列,且最高两层的有2列,一层的有一列;由俯视图知共5列,
所以小正方体的个数最少的几何体为:2+2+1+1+1=7个.
故答案为:7.
【点睛】
考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.
2、
【分析】
有顺序的计算上下面,左右面,前后面的表面积之和即可.
【详解】
解:4×2+3×2+4×2=22(cm2).
所以该几何体的表面积为22cm2.
故答案为:22.
【点睛】
此题考查了几何体的表面积计算,解题的关键是分别判断出各个视图中小正方形的个数.
3、
【分析】
根据圆柱体的主视图为边长为10cm的正方形,得到圆柱的底面直径和高,从而计算侧面积.
【详解】
解:∵果罐的主视图是边长为10cm的正方形,为圆柱体,
∴圆柱体的底面直径和高为10cm,
∴侧面积为=,
故答案为:.
【点睛】
本题考查了几何体的三视图,解题的关键是根据三视图得到几何体的相关数据.
4、24
【分析】
根据主视图确定出圆柱体的底面直径与高,根据圆柱体的体积公式列式计算即可.
【详解】
解:由图知,圆柱体的底面直径为4,高为6,
∴V圆柱=πr2h=π×22×6=24π.
故答案为24π.
【点睛】
本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的体积公式.根据主视图确定出圆柱体的底面直径与高是解题的关键.
5、48π
【分析】
由题意推知几何体是圆柱,高为5cm,底面半径为3cm,根据圆柱的表面积公式可求可求其表面积.
【详解】
解:由题意推知几何体是圆柱,从主视图,左视图可知高为5cm,从俯视图可知底面半径为3cm,
圆柱的表面积是:2×32×π+2π×3×5=48π
故答案为:48π.
【点睛】
本题考查三视图、圆柱的表面积,考查简单几何体的三视图的运用.培养同学们的空间想象能力和基本的运算能力.基础题.
三、解答题
1、DC的影长为3.1m.
【分析】
直接延长AD交BC的延长线于点E,可得木杆CD在灯光下的影子,进而利用锐角三角函数关系得出答案.
【详解】
解:在过点D的水平线上取点F,
延长AD交BC于点E,光线被CD遮挡得到影子是CE,
则线段EC的长即为DC的影长,
∵∠ADF=39°,DF∥CE,
∴∠E=∠ADF=39°,
∵DC=2.5,
∴在Rt△DCE中,
tan39°=,
解得:EC=≈3.1(m),
答:DC的影长为3.1m.
【点睛】
本题考查解直角三角形,掌握解直角三角形的方法,选择恰当锐角三角函数是解题关键.
2、(1)见解析;(2)4
【分析】
(1)主视图有3列,每列小正方形数目分别为3,1,2;左视图3列,每列小正方形数目分别为3,2,1;俯视图有3列,每行小正方形数目分别为3,2,1;
(2)保持俯视图和左视图不变,得到最多可得到小正方形的个数,与原图形比较即可得出添加的小正方形个数.
【详解】
(1)如图所示:
(2)若保持俯视图和左视图不变,则做多可有多少个小正方形如图:
与原图比较,则每列小正方形添加数目分别:0+3+1=4(个)
故答案为:4
【点睛】
本题考查作图−三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.
3、(1)见解析;(2)28;(3)2
【分析】
(1)从正面看得到从左往右3列正方形的个数依次为1,3,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;
(2)有顺序的计算上下面,左右面,前后面的表面积之和即可;
(3)根据保持这个几何体的主视图和左视图不变,可知添加小正方体是1列和3列各加1个,依此即可求解.
【详解】
(1)如图所示:
(2)(4×2+6×2+4×2)×(1×1)
=(8+12+8)×1
=28
故答案为:28
(3)由分析可知,最多可以再添加2个小正方体,如图,
故答案为:2
【点睛】
此题考查了作图−三视图,用到的知识点为:计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错;三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.
4、(1)见解析;(2)3
【分析】
(1)根据三视图的画法分别画出从正面、左面、上面看该组合体所看到的图形即可;
(2)可在最左侧前端放两个后面再放一个即可得出答案.
【详解】
解:(1)该组合体的三视图如图所示:
(2)在俯视图的相应位置最多添加相应数量的正方体,
如图所示:
∴最多还可以再搭3块小正方体.
【点睛】
本题考查简单组合体的三视图,理解视图的意义,掌握简单组合体三视图的画法是正确解答的关键.
5、
(1)长方体或四棱柱
(2)66cm2
【分析】
(1)这个立方体的三视图都是长方形所以这个几何体应该是长方体;
(2)长方体一共有6个面,算长方体的表面积应该把这6个面的面积相加即可.
(1)
∵这个立方体的三视图都是长方形,
∴这个立方体是长方体或四棱柱.
(2)
由三视图知该长方体的表面积:(3)(3×4)×4+(3×3)×2=66(cm2)
【点睛】
本题考查了由立体图形的三视图确定立体图形的形状;根据边长求表面积大小.解题的关键是要有空间想象能力.长方体有六个面,算表面积时不要遗漏.
相关试卷
这是一份初中第25章 投影与视图综合与测试课堂检测,共20页。试卷主要包含了如图,该几何体的主视图是,如图所示,该几何体的俯视图是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试随堂练习题,共20页。试卷主要包含了如图所示的几何体的俯视图是,如图所示的几何体左视图是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试同步训练题,共18页。试卷主要包含了图中几何体的左视图是等内容,欢迎下载使用。