2021学年第25章 投影与视图综合与测试同步练习题
展开沪科版九年级数学下册第25章投影与视图专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图是由4个相同的小正方体组成的一个几何体,则从正面看到的平面图形是( )
A. B.
C. D.
2、如图,图形从三个方向看形状一样的是( )
A. B.
C. D.
3、由6个大小相同的正方体搭成的几何体如图所示,则它的三种视图中,面积一样的是( )
A.主视图与俯视图 B.主视图与左视图
C.俯视图与左视图 D.主视图、左视图和俯视图
4、四个相同的小正方体组成的立体图形如图所示,它的主视图为( )
A. B. C. D.
5、如图所示的几何体的左视图是( )
A. B. C. D.
6、如图,该几何体的左视图是( )
A. B. C. D.
7、如图是一个几何体的实物图,则其主视图是( )
A. B. C. D.
8、棱长为a的小正方体按照如图所示的规律摆放,从上面看第100个图,得到的平面图形的面积为( )
A.100a B. C. D.
9、如图,几何体的左视图是( )
A. B. C. D.
10、如图所示,两个几何体各由4个相同的小正方体搭成,比较两个几何体的三视图,可以得到的正确结论是( )
A.主视图不同
B.左视图不同
C.俯视图不同
D.主视图、左视图和俯视图都不相同
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,是一个由若干个小正方体搭成的几何体的主视图与视图,设搭这样的几何体最多需要m块小立方块,最少需要n块小立方块,则m+n=_____.
2、从正面和左面看一个长方体得到的形状图如图所示(单位:),则其从上面看到的形状图的面积为__________.
3、一个直九棱柱底面的每条边长都等于3cm,侧边长都等于6cm,则它的侧面面积等于 ___cm2.
4、如图是某几何体的三视图,该几何体是_____.
5、一个几何体的三视图如图所示,则该几何体的表面积是_________.
三、解答题(5小题,每小题10分,共计50分)
1、从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状.
2、(1)如图,由几个棱长为1的正方体组成的一个几何体.
①请在方格纸中用实线画出这个几何体从不同方向看到的图形;
②该几何体的表面积是______平方单位(包括底面积)
(2)如图,平面上有四个点A,B,C,D,按照以下要求作图并解答问题:
①作直线AD;
②作射线CB交直线AD于点E;
③连接AC,BD交于点F;
④若图中F是AC的一个三等分点,AF<FC,已知线段AC上所有线段之和为24cm,则AF的长为___cm.
3、图中是由几个小立方块搭成的几何体的从上面看的形状图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的从正面看和从左面看的形状图.
4、(1)如图1所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)
(2)画出图2实物的三视图.
5、如图是由7个棱长为1的小正方体搭成的几何体.
(1)请分别画出这个几何体的主视图、左视图和俯视图;
(2)这个几何体的表面积为 (包括底面积);
(3)若使得该几何体的俯视图和左视图不变,则最多还可以放 个相同的小正方体.
-参考答案-
一、单选题
1、B
【分析】
根据图形特点,分别得出从正面看每一列正方形的个数,即可得出正面看到的平面图形.
【详解】
解:从正面看,有三列,第一列有一个正方形,第二列有一个正方形,第三列有两个个正方形,从正面看,有两行,第一行有一个正方形,第二行有三个正方形,
故选B.
【点睛】
本题考查从不同方向看几何体.做此类题,最好是逐列分析每一列中正方形的个数然后组合即可.
2、C
【分析】
根据从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.
【详解】
解:A.从上面看是一个圆,从正面和从左边看是一个矩形,故本选项不合题意;
B.从上面看是一个有圆心的圆,从正面和从左边看是一个等腰三角形,故本选项不合题意;
C.从三个方向看形状一样,都是圆形,故本选项符合题意;
D.从上面看是一个正方形,从正面和从左边看是一个长方形形,故本选项不合题意.
故选:C.
【点睛】
本题考查了简单几何体的三视图,从上面看到的图形是俯视图,从正面看到的图形是主视图,从左面看到的图形是左视图.
3、B
【分析】
根据简单几何体的三视图解答即可.
【详解】
解:该几何体的三视图如图所示:
, ,
由三视图可知,面积一样的是主视图与左视图,
故选:B.
【点睛】
本题考查简单几何体的三视图,熟知三视图的特点是解答的关键.
4、A
【分析】
根据几何体的三视图解答即可.
【详解】
根据立体图形得到:
主视图为:,
左视图为:,
俯视图为:,
故选:
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
5、D
【分析】
根据左视图的定义即可得.
【详解】
解:左视图是指从左面观察几何体所得到的视图,
这个几何体的左视图是,
故选:D.
【点睛】
本题考查了左视图,熟记定义是解题关键.
6、C
【分析】
根据从左边看得到的图形是左视图解答即可.
【详解】
解:从左边看是一个正方形被水平的分成3部分,中间的两条分线是虚线,故C正确.
故选C.
【点睛】
本题主要考查了简单组合体的三视图,掌握三视图的定义成为解答本题的关键.
7、C
【分析】
找到从正面看所得到的图形即可.
【详解】
解:从正面看可得到一个矩形和一个下底和矩形相邻的梯形的组合图.
故选:C.
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
8、B
【分析】
先探究第100个图形俯视图所看到的小正方形的个数,再结合每个小正方形的面积为 从而可得答案.
【详解】
解:(1)∵第1个图有1层,共1个小正方体,
第2个图有2层,第2层正方体的个数为1+2=3,
第3个图有3层,第3层正方体的个数为1+2+3=6,
第n层时,正方体的个数为1+2+3+…+n=n(n+1),
当n=100时,第100层的正方体的个数为×100×101=5050,
从上面看第100个图,看到了5050个小正方形,所以面积为:
故选B
【点睛】
本题考查的是三视图,俯视图的面积,掌握“正方体堆砌图形的俯视图”是解本题的关键.
9、D
【分析】
根据从左边看得到的图形是左视图,可得答案.
【详解】
根据左视图的定义可知,这个几何体的左视图是选项D,
故选:D.
【点睛】
本题考查简单组合体的三视图,解题的关键是理解三视图的定义.
10、C
【分析】
根据几何体的三视图特征进行判断即可.
【详解】
解:观察两个几何体的三视图,
则知:主视图相同,左视图相同,俯视图不同,
故选项A、B、D错误,选项C正确,
故选:C.
【点睛】
本题考查几何体的三视图,理解三视图的意义是解答的关键.
二、填空题
1、15
【分析】
易得这个几何体共有3层,由俯视图可得第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,相加即可.
【详解】
解:有两种可能;
有主视图可得:这个几何体共有3层,
由俯视图可得:第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,
第三层只有一块,
故:最多m为3+4+1=8个小立方块,最少n为个2+4+1=7小立方块.
m+n=15,
故答案为:15
【点睛】
此题主要考查了由三视图判断几何体,关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就很容易得到答案.
2、6
【分析】
从正面看,左面看,得到长方体的高为4,长为3,得到从上面看的矩形长为3;左边看,从上面看,宽相等,得到从上面看的矩形宽为2,计算即可.
【详解】
根据正面,左面高平齐,正面,上面长对正,左面,上面宽相等,得到从上面看的矩形长为3,宽为2
故从上面看到的形状图的面积为6,
故答案为:6.
【点睛】
本题考查了从不同方向看,熟练掌握三视图的特点与联系是解题的关键.
3、162
【分析】
展开后底面一边长为7cm,求出底面的周长,用底面周长×侧边长计算即可.
【详解】
解:∵一个直九棱柱底面的每条边长都等于3cm,
∴直九棱柱底面的周长为9×3=27cm;
侧面积是27×6=162(cm2).
故答案为162.
【点睛】
本题考查了几何体的侧面积的应用,关键是掌握直棱柱侧面积公式底面周长×侧棱长.
4、圆柱
【分析】
由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.
【详解】
根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱.
故答案为:圆柱.
【点睛】
本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
5、48π+64
【分析】
原几何体为圆柱的一半,且高为8,底面圆的半径为4,表面积由上下两个半圆及正面的正方形和侧面圆柱面积构成,分别求解相加可得答案.
【详解】
解:由三视图可知:原几何体为圆柱的一半,(沿中轴线切开),
由题意可知,圆柱的高为8,底面圆的半径为4,
故其表面积为S=42π+4π×8+8×8=48π+64.
故答案为:48π+64.
【点睛】
本题考查由几何体的三视图求面积,由三视图得出原几何体的形状和数据是解决问题的关键,属基础题.
三、解答题
1、见解析
【分析】
读图可得,主视图有3列,每列小正方形数目分别为2,1,1;左视图有1列,小正方形数目分别为2;俯视图有3行,每行小正方形数目分别为1,1,1.
【详解】
如图所示:
【点睛】
此题考查作图-三视图,解题关键在于掌握作图法则.
2、(1)①见解析;②36;(2)①见解析;②见解析;③见解析;④4
【分析】
(1)从正面看:第一列有3个小正方形,第二列有2个小正方形,第三列有1个小正方形;从左面看:与从正面看到的相同;从上面看:第一列有3个小正方形,第二列有2个小正方形,第三列有1个小正方形;据此解答即可;②表面积=几何体6个面的面积之和,即可求解;
(2)①②③根据题意要求画图即可;④由题意可得AC=3AF,FC=2AF,然后根据线段AC上所有线段之和为24cm即可求出AF的长;
【详解】
解:(1)①如图所示:
②该几何体的表面积是6×6=36平方单位;
(2)①如图所示;
②如图所示;
③如图所示;
④因为F是AC的一个三等分点,AF<FC,
所以AC=3AF,FC=2AF,
因为线段AC上所有线段之和为24cm,
所以AF+CF+AC=24,即AF+2AF+3AF=24,即6AF=24,
所以AF的长为4cm.
故答案为:4
【点睛】
本题考查了组合体的三视图、线段、射线以及直线的有关知识,属于基础题型,熟练掌握相关的基础知识是解题关键.
3、见解析
【分析】
根据立体图形的三视图特点解答.
【详解】
解:从正面看,
从左面看.
【点睛】
此题考查立体图形的三视图,正确理解三视图所看的角度及小正方体的位置是解题的关键.
4、(1)见解析;(2)见解析
【分析】
(1)如图,分别以为端点作射线,两射线交于点即可求得的位置,过和木桩的顶端,以为端点做射线,与底面交于点,木桩底部为点,连接,则即为竖立在地面上木桩的影子;
(2)根据三视图的作法要求画三视图即可,主视图为等边三角形,左视图为矩形,俯视图为矩形,中间有一条实线
【详解】
(1)如图所示,为灯源,EF为竖立在地面上木桩的影子,
(2)如图所示,
【点睛】
本题考查了中心投影,三视图,掌握中心投影与三视图的作图方法是解题的关键.
5、(1)见解析;(2)30;(3)3
【分析】
(1)根据三视图的画法画出相应的图形即可;
(2)三视图面积的2倍加被挡住的面积即可;
(3)根据俯视图和左视图的特点即可求解.
【详解】
(1)这个几何体的主视图、左视图和俯视图如下:
(2)(6+4+4)×2+2=30,
故答案为:30;
(3)保持这个几何体的俯视图和左视图不变,可往第一列和第二列分别添加1个、2个小正方体,
故答案为:3.
【点睛】
此题主要考查了三视图,正确掌握不同视图的观察角度是解题关键.
初中沪科版第25章 投影与视图综合与测试一课一练: 这是一份初中沪科版第25章 投影与视图综合与测试一课一练,共19页。试卷主要包含了如图所示的几何体的左视图是,如图所示的几何体的俯视图是,下面左侧几何体的主视图是等内容,欢迎下载使用。
初中数学沪科版九年级下册第26章 概率初步综合与测试课后测评: 这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课后测评,共17页。试卷主要包含了在一个不透明的布袋中,红色,下列事件中,属于必然事件的是等内容,欢迎下载使用。
初中数学沪科版九年级下册第25章 投影与视图综合与测试随堂练习题: 这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试随堂练习题,共20页。试卷主要包含了如图所示的几何体的俯视图是,如图所示的几何体左视图是等内容,欢迎下载使用。