沪科版九年级下册第25章 投影与视图综合与测试测试题
展开
这是一份沪科版九年级下册第25章 投影与视图综合与测试测试题,共20页。试卷主要包含了如图所示几何体的左视图是等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是由6个同样大小的正方体摆成,将标有“1”的这个正方体去掉,所得几何体( )A.俯视图不变,左视图不变 B.主视图改变,左视图改变C.俯视图改变,主视图改变 D.主视图不变,左视图改变2、如图是由5个相同的小正方体搭成的几何体,它的左视图是( ).A. B. C. D.3、下列四个几何体中,主视图与俯视图不同的几何体是( )A. B.C. D.4、如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是( )A. B.C. D.5、如图是一个几何体的实物图,则其主视图是( )A. B. C. D.6、如图,小明在A时测得某树的影长为8m,B时又测得该树的影长为2m,若两次日照的光线互相垂直,则树的高度为( )m.A.2 B.4 C.6 D.87、如图,这个几何体是将一个正方体中间挖出一个圆柱体后的剩余部分,该几何体的主视图是( )A. B. C. D.8、如图所示几何体的左视图是( )A. B.C. D.9、下列几何体中,俯视图为三角形的是( )A. B. C. D.10、如图,一路灯距地面5.6米,身高1.6米的小方从距离灯的底部(点O)5米的A处,沿OA所在的直线行走到点C时,人影长度增长3米,小方行走的路程AC=( )A.7.2 B.6.6 C.5.7 D.7.5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在学校开展的手工制作比赛中,小明用纸板制作了一个圆锥模型,它的三视图如图所示,根据图中数据求出这个模型的侧面积为______.2、如图,某工件的三视图(单位:),若俯视图为直角三角形,则此工件的体积为__.3、圆锥的母线长为5,侧面展开图的面积为20π,则圆锥主视图的面积为_________.4、如图所示是给出的几何体三个方向看到的形状,则这个几何体最多由_____个小正方体组成.5、皮影戏是一种以兽皮或纸板做成的人物剪影,在灯光照射下用隔亮布进行表演的民间戏剧.表演者在幕后操纵剪影、演唱,或配以音乐,具有浓厚的乡土气息.“皮影戏”中的皮影是______(填写“平行投影”或“中心投影”)三、解答题(5小题,每小题10分,共计50分)1、(1)如图1所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)(2)画出图2实物的三视图.2、补全如图立体图形的三视图.3、一个几何体的三个视图如图所示(单位:cm).(1)写出这个几何体的名称: ;(2)若其俯视图为正方形,根据图中数据计算这个几何体的表面积.4、用棱长都为5cm的小立方块搭成几何体,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.(1)请你分别画出从正面和从左面看到的这个几何体的形状图;(2)若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加大小相同的小立方块,以搭成一个大正方体,至少还需要_______个小立方块;(3)①图中的几何体的表面积(包括与桌面接触的部分)为_______;②若新搭一个几何体,且满足如下三个条件:图中从上面看到的几何体的形状图不变,小立方块的总数不变,从上面看到的小正方形中的数字可以改变,则新搭几何体的表面积(包括与桌面接触的部分)最小值和最大值分别为_______,_______.5、小华在不同时间于天安门前拍了几幅照片,下面哪幅照片是在下午拍摄的? -参考答案-一、单选题1、A【分析】根据几何体的三视图判断即可;【详解】根据已知图形,去掉标有“1”的这个正方体,主视图改变,俯视图和左视图不变;故选A.【点睛】本题主要考查了几何体三视图的应用,准确分析判断是解题的关键.2、B【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】从左面看,第一层有2个正方形,第二层左侧有1个正方形.故选:B.【点睛】本题考查了三视图的知识,熟知左视图是从物体的左面看得到的视图是解答本题的关键.3、C【分析】正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同.【详解】解:A、正方体的主视图与俯视图都是正方形,选项不符合题意;B、圆柱横着放置时,主视图与俯视图都是长方形,选项不符合题意;C、圆锥的主视图与俯视图分别为圆形、三角形,故符合题意;D、球体的主视图与俯视图都是圆形,故不符合题意.故选:C.【点睛】本题考查了简单的几何体的三视图,从不同方向看物体的形状所得到的图形可能不同.4、D【分析】左视图:从左边看立体图形,看到的平面图形是左视图,根据左视图的定义可得答案.【详解】解:该几何体从左面看到的形状图有2列,第1列看到1个正方形,第2列看到2个正方形,所以左视图是D,故选D【点睛】本题考查的是三视图,值得注意的是能看到的立体图形中的线条都要画成实线,看不到的画成虚线,掌握“左视图的含义”是解题的关键.5、C【分析】找到从正面看所得到的图形即可.【详解】解:从正面看可得到一个矩形和一个下底和矩形相邻的梯形的组合图.故选:C.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6、B【分析】根据题意,画出示意图,易得:△EDC∽△FDC,进而可得,即DC2=ED•FD,代入数据可得答案.【详解】解:根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=2m,FD=8m;∵∠E+∠F=90°,∠E+∠ECD=90°,∴∠ECD=∠F,∴△EDC∽△FDC,∴,即DC2=ED•FD=2×8=16,解得CD=4m.故选:B.【点睛】本题主要考查了平行投影与相似三角形的应用,准确计算是解题的关键.7、A【分析】根据主视图的概念求解即可.【详解】解:由题意可得,该几何体的主视图是:.故选:A.【点睛】此题考查了几何体的主视图,解题的关键是熟练掌握几何体主视图的概念.8、D【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都变现在左视图中.【详解】解:从左视图看,易得到一个矩形,矩形中有一条横行的虚线,故选:D【点睛】本题考查简单组合体的三视图,解题的关键是理解三视图的定义,属于中考常考题型.9、D【分析】从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图.【详解】从上方朝下看只有D选项为三角形.故选:D.【点睛】本题考查了简单几何体的三视图,三视图是从正面、左面、上面以平行视线观察物体所得的图形.从视图反过来考虑几何体时,它有多种可能性.例如,正方体的主视图是一个正方形,但主视图是正方形的几何体有很多,如三棱柱、长方体、圆柱等.因此在学习时应结合实物,亲自变换角度去观察,才能提高空间想象能力.10、D【分析】设出影长AB的长,利用相似三角形可以求得AB的长,然后在利用相似三角形求得AC的长即可.【详解】解:∵AE⊥OD,OG⊥OD,∴AE//OG,∴∠AEB=∠OGB,∠EAB=∠GOB,∴△AEB∽△OGB,∴,即 ,解得:AB=2m;∵OA所在的直线行走到点C时,人影长度增长3米,∴DC=AB+3=5m,OD=OA+AC+CD=AC+10,∵FC∥GO,∴∠CFD=∠OGD,∠FCD=∠GOD,△DFC∽△DGO,∴,即,解得:AC=7.5m.所以小方行走的路程为7.5m.故选择:D.【点睛】本题主要考查的是相似三角形在实际中的中心投影的应用,掌握相似三角形判断与性质,利用对应边成比例是解答本题的关键.二、填空题1、【分析】从主视图和左视图都为一个三角形,俯视图为一个圆,可以确定这个几何体是圆锥,由三视图可知圆锥的底面半径为,高为4,进而求得母线长,据此求得圆锥的侧面积.【详解】从主视图和左视图都为一个三角形,俯视图为一个圆,可以确定这个几何体是圆锥,由三视图可知圆锥的底面半径为,高为,则母线长为,所以这个模型的侧面积为.故答案为.【点睛】本题考查了根据三视图确定几何体,求圆锥的侧面,牢记公式是解题的关键.2、30cm3【分析】通过三视图还原原几何体,利用柱体的体积公式V=Sh即可求解.【详解】解:由主视图与左视图都是长方形,说明该几何体是柱体,由俯视图知底面是直角三角形的直三棱柱,∴几何体的三视图转化成的几何体为:底面为直角三角形的直三棱柱,由主视图与左视图可知底边是直角边为4cm,3cm的直角三角形,高为5cm的三棱柱,底面三角形面积S=∴此工件的体积=Sh=6×5=30(cm3),故答案为:30cm3.【点睛】本题考查由三视图到立体图形,通过简单几何体的三视图逆向思维得出简单几何体,柱体的体积,关键是掌握由三视图通过平面图形到立体图形的想象得出几何体.3、12【分析】圆锥的主视图是等腰三角形,根据圆锥侧面积公式S=πrl代入数据求出圆锥的底面半径长,再由勾股定理求出圆锥的高即可.【详解】解:根据圆锥侧面积公式:S=πrl,圆锥的母线长为5,侧面展开图的面积为20π,故20π=π×5×r,解得:r=4.由勾股定理可得圆锥的高∴圆锥的主视图是一个底边为8,高为3的等腰三角形,∴它的面积=,故答案为:12.【点睛】本题考查了三视图的知识,圆锥侧面积公式的应用,正确记忆圆锥侧面积公式是解题关键.4、10【分析】从俯视图可知第一层有5个小正方体,从正视图和左视图可知第二层最多有5个,据此即可求得答案【详解】由俯视图可知第一层有5个小正方体,由已知的正视图和左视图可知,第2层最多有5个小正方体,故该几何体最多有5+5=10个故答案为:10【点睛】考查几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.5、中心投影【分析】根据平行投影和中心投影的定义解答即可.【详解】解:“皮影戏”中的皮影是中心投影.故答案是中心投影.【点睛】本题主要考查了平行投影和中心投影,中心投影是指把光由一点向外散射形成的投影,平行投影是在一束平行光线照射下形成的投影.三、解答题1、(1)见解析;(2)见解析【分析】(1)如图,分别以为端点作射线,两射线交于点即可求得的位置,过和木桩的顶端,以为端点做射线,与底面交于点,木桩底部为点,连接,则即为竖立在地面上木桩的影子;(2)根据三视图的作法要求画三视图即可,主视图为等边三角形,左视图为矩形,俯视图为矩形,中间有一条实线【详解】(1)如图所示,为灯源,EF为竖立在地面上木桩的影子,(2)如图所示,【点睛】本题考查了中心投影,三视图,掌握中心投影与三视图的作图方法是解题的关键.2、见解析【分析】根据简单几何体的三视图的画法,画出相应的图形即可,注意看得见的轮廓线用实线表示,看不见的轮廓线用虚线表示.【详解】解:补全这个几何体的三视图如下:.【点睛】本题考查了简单几何体的三视图,理解视图的意义,掌握简单几何体的三视图的画法是正确解答的前提.3、(1)长方体或四棱柱(2)66cm2【分析】(1)这个立方体的三视图都是长方形所以这个几何体应该是长方体;(2)长方体一共有6个面,算长方体的表面积应该把这6个面的面积相加即可.(1)∵这个立方体的三视图都是长方形,∴这个立方体是长方体或四棱柱.(2)由三视图知该长方体的表面积:(3)(3×4)×4+(3×3)×2=66(cm2)【点睛】本题考查了由立体图形的三视图确定立体图形的形状;根据边长求表面积大小.解题的关键是要有空间想象能力.长方体有六个面,算表面积时不要遗漏.4、(1)见解析;(2)12;(3)①1400;②1250,1550.【分析】(1)根据三视图可画出几何体的形状图;(2)根据正方体的性质,每行每列的小正方体都相等,都是3个,这样正方体的小正方体的个数应该为27个,现在已有15个,这样再补12个即可;(3)①从上面看到的几何体的形状图不变,小立方块的总数不变,表面积最小时,每个位置数量尽量相等,可见解析中图,按图计算即可;②从上面看到的几何体的形状图不变,小立方块的总数不变,表面积最大时,每个位置数量尽量相差最大,可见解析中图,按图计算即可.【详解】解:(1)由已知可得:(2)根据正方体的性质,每行每列都是3个小正方体,已知有(个)∴(个),故答案为:12;(3)①∵小正方体的棱长为5cm,∴小正方形的面积为,∴几何体表面积为,故答案为:;②如图搭建此时表面积为最小,几何体最小表面积为;如图搭建此时表面积为最大,几何体最大表面积为;故答案为:,.【点睛】本题考查了几何体的三视图,根据三视图计数,计算表面积,根据小正方体的数量计算表面积是本题的难点,了解什么情况表面积最小,什么情况表面积最大是解题关键.5、右边一幅照片是下午拍摄的【分析】根据人和影子的位置,结合投影的概念,分别判断即可得到正确答案.【详解】右边一幅照片是下午拍摄的.因为天安门坐北朝南,由人影在人身后偏右,推知太阳在西南方向,此时是下午时间.【点睛】本题考查投影的概念,能够结合物体和影子的位置进行准确判断是解此类题的关键.
相关试卷
这是一份数学九年级下册第25章 投影与视图综合与测试课时练习,共20页。试卷主要包含了如图几何体的主视图是,下列物体中,三视图都是圆的是,如图所示的几何体左视图是等内容,欢迎下载使用。
这是一份沪科版九年级下册第25章 投影与视图综合与测试同步达标检测题,共22页。
这是一份沪科版九年级下册第25章 投影与视图综合与测试当堂达标检测题,共19页。试卷主要包含了如图,几何体的左视图是,如图所示的几何体的俯视图是等内容,欢迎下载使用。