数学沪科版第25章 投影与视图综合与测试当堂检测题
展开这是一份数学沪科版第25章 投影与视图综合与测试当堂检测题,共22页。试卷主要包含了如图,身高1.5米的小明.等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图月考
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是( )
A. B.
C. D.
2、下面是由一些完全相同的小立方块搭成的几何体从三个方向看到的形状图.搭成这个几何体所用的小立方块的个数是( )
A.个 B.个 C.个 D.个
3、下列哪种光线形成的投影是平行投影( )
A.太阳 B.探照灯 C.手电筒 D.路灯
4、如图,身高1.5米的小明(AB)在太阳光下的影子AG长1.8米,此时,立柱CD的影子一部分是落在地面的CE,一部分是落在墙EF上的EH.若量得米,米,则立柱CD的高为( ).
A.2.5m B.2.7m C.3m D.3.6m
5、如图所示的工件中,该几何体的俯视图是( )
A. B. C. D.
6、把7个同样大小的正方体形状的积木堆放在桌子上,从正面和左面看到的形状图都是如图所示的同样的图形,则其从上面看到的形状图不可能是( )
A. B. C. D.
7、如图所示的几何体,从上面看到的形状图是( )
A. B.
C. D.
8、某几何体从三个方向看到的平面图形都相同,这个几何体可以是( )
A. B.
C. D.
9、如图,从正面看这个几何体得到的图形是( )
A. B.
C. D.
10、如图所示的几何体,其左视图是( ).
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个“粮仓”的三视图如图所示(单位:),则它的侧面积是________.
2、由8个相同的小正方体组成的几何体如图1所示,拿掉______个小正方体后的几何体的主视图和左视图都是图2所示图形.
3、在数学活动课上,老师带领数学小组测量大树的高度.如图,数学小组发现大树离教学楼有5m,高1.4m的竹竿在水平地面的影子长1m,此时大树的影子有一部分映在地面上,还有一部分映在教学楼的墙上,墙上的影子离为2m,那么这棵大树高___________m.
4、如图是某物体的三视图,则此物体的体积为_____(结果保留π).
5、已知某几何体的三视图如图所示,根据图中数据求得该几何体的体积为_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,是公园的一圆形桌面的主视图,表示该桌面在路灯下的影子.
(1)请你在图中找出路灯的位置(要求保留画图痕迹,光线用虚线表示);
(2)若桌面直径和桌面与地面的距离均为1.2m,测得影子的最大跨度为2m,求路灯O与地面的距离.
2、如图,已知小华、小强的身高都是1.6m,小华、小强之间的水平距离BC为14m,在同一盏路灯下,小华的影长AB=4m,小强的影长CD=3m,求这盏路灯OK的高度.
3、一个几何体由几个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.请画出从正面和左面看到的这个几何体的形状图.
4、一个几何体是由若干个棱长为1cm的小正方体搭成的,从左面、上面看到的几何体的形状图如图所示:
(1)该几何体最少由_______个小立方体组成,最多由_______个小立方体组成.
(2)将该几何体形状固定好,当几何体体积达到最大时,画出此时的主视图并求出几何体的表面积.
5、一个几何体由大小相同的立方块搭成,从上面看到的形状如图所示,其中小正方形中的数字表示在该位置的立方块个数.
(1)在所给的方框中分别画出该儿何体从正面,从左面看到的形状图;
(2)若允许从该几何体中拿掉部分立方块,使剩下的几何体从正面看到的形状图和原几何体从正面看到的形状图相同,则最多可拿掉 个立方块.
-参考答案-
一、单选题
1、D
【分析】
左视图:从左边看立体图形,看到的平面图形是左视图,根据左视图的定义可得答案.
【详解】
解:该几何体从左面看到的形状图有2列,
第1列看到1个正方形,第2列看到2个正方形,
所以左视图是D,
故选D
【点睛】
本题考查的是三视图,值得注意的是能看到的立体图形中的线条都要画成实线,看不到的画成虚线,掌握“左视图的含义”是解题的关键.
2、D
【分析】
从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.
【详解】
解:综合主视图,俯视图,左视图,底层有5个正方体,第二层有1个正方体,所以搭成这个几何体所用的小立方块的个数是6,
故选D.
【点睛】
考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.
3、A
【分析】
中心投影是指把光由一点向外散射形成的投影,平行投影是在一束平行光线照射下形成的投影,根据定义逐一分析即可得到答案.
【详解】
解:太阳光线形成的投影是平行投影,
探照灯,手电筒,路灯形成的投影是中心投影,
故选A
【点睛】
本题考查的是平行投影与中心投影的含义及应用,根据定义熟练判断中心投影与平行投影是解题的关键.
4、A
【分析】
将太阳光视为平行光源,可得,MD=HE,即可得CM的值,故计算CD=CM+DM即可.
【详解】
如图所示,过D点作BG平行线交FE于点H,过E点作BG平行线交CD于点M
∵BG//ME//DH
∴∠BGA=∠MEC,∠BAG=∠DCE=90°
∴,MD=HE
∴
∴
∴CD=CM+DM=1+1.5=2.5
故答案选:A.
【点睛】
本题考查了相似三角形的判断即性质,由太阳光投影判断出平行关系进而求得相似是解题的关键.
5、B
【分析】
根据从上边看得到的图形是俯视图,可得答案.
【详解】
解:从上边看是一个同心圆,外圆是实线,内圆是虚线,
故选:B.
【点睛】
本题考查了简单组合体的三视图,解题关键是掌握从上边看得到的图形是俯视图.
6、C
【分析】
利用俯视图,写出符合题意的小正方体的个数,即可判断.
【详解】
A、当7个小正方体如图分布时,符合题意,本选项不符合题意.
B、当7个小正方体如图分布时,符合题意,本选项不符合题意.
C、没有符合题意的几何图形,本选项符合题意.
D、当7个小正方体如图分布时,符合题意,本选项不符合题意.
故选:C.
【点睛】
此题考查了从不同的方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力.
7、B
【分析】
找出从几何体的上面看所得到的视图即可.
【详解】
解:从上面看到的形状图是,
故选:B
【点睛】
此题主要考查了简单几何体的视图,注意培养学生的思考能力和对几何体三种视图的空间想象能力是解题的关键.
8、C
【分析】
根据三视图判断即可;
【详解】
的左视图、主视图是三角形,俯视图是圆,故A不符合题意;
的左视图、主视图是长方形,俯视图是三角形,故B不符合题意;
的主视图、左视图、俯视图都是正方形,故C符合题意;
的左视图、主视图是长方形,俯视图是圆,故D不符合题意;
故选C.
【点睛】
本题主要考查了几何体三视图的判断,准确分析是解题的关键.
9、A
【分析】
首先从正面看几何体得到的平面图形是几个正方形的组合图形;然后再分别得到的图形的列数和每列小正方形的个数,由此可得出答案.
【详解】
解:观察图形从左到右小正方块的个数分别为1,2,1,
故选A.
【点睛】
本题主要考查的是简单组合体的三视图,熟练掌握几何体三视图的画法是解题的关键.
10、B
【分析】
根据左视图的定义(一般指由物体左边向右做正投影得到的视图)求解即可.
【详解】
解:由左视图的定义可得:
左视图为一个正方形,由于正方体内部有一个圆柱体,根据其方向可得左视图为:
,
故选:B.
【点睛】
题目主要考查三视图的作法,理解三视图的定义是解题关键.
二、填空题
1、
【分析】
根据三视图可知该几何体为圆锥和圆柱的结合体,进而根据三视图中的数据计算侧面积即可.
【详解】
解:由三视图可知,这个几何体上部分是一个圆锥,下部分是一个圆柱,
由图中数据可知,圆锥的高为7-4=3m,圆锥的底面圆的直径为6m,圆柱的高为4m,底面圆直径为6m,
∴圆锥的母线长m ,
∴圆柱部分的侧面积,圆锥的侧面积,
∴这个几何体的侧面积,
故答案为:.
【点睛】
本题主要考查了简单组合体的三视图,圆锥和圆柱的侧面积计算,解题的关键在于能够根据几何体的三视图确定几何体为圆锥和圆柱的结合体.
2、3、4、5
【分析】
拿掉若干个小立方块后保证从正面和左面看到的图形如图2所示,所以最底下一层最少必须有2个小立方块,上面一层必须保留1个立方块,即可知可以拿掉小立方块的个数.
【详解】
根据题意,拿掉若干个小立方块后保证从正面和左面看到的图形如图2所示,
所以最底下一层最少必须有2个小立方块,上面一层必须保留1个立方块,如图,
故答案为:3,4、5.
【点睛】
本题考查了由三视图判断几何体,几何体的三种视图,掌握定义是关键.解决此类图的关键是由立体图形得到三视图,学生由于空间想象能力不够,易造成错误.
3、9
【分析】
根据同一时刻影长与物高成比例,先求出CE,再求AB即可.
【详解】
解:延长AD交BC延长线于E,
根据同一时刻影长与物高成比例可得CE:CD=1:1.4,
∵CD=2m,
∴CE=m,
∴BE=BC+CE=5+=m,
∴BE:AB=1:1.4,
∴AB=9m.
故答案为:9.
【点睛】
本题考查平行投影问题,掌握平行摄影的原理是同一时刻影长与物高成比例是解题关键.
4、π
【分析】
由已知中的三视图,可以判断出该物体是由下部分为底面直径为10、高10的圆柱,上部分是底面直径为10,高为5的圆锥组成的,代入圆柱、圆锥的体积公式,即可得到答案.
【详解】
解:由三视图知,该物体是由下部分为底面直径为10、高10的圆柱,上部分是底面直径为10,高为5的圆锥组成的.
∴体积=V圆柱+V圆锥=.
故答案为:π.
【点睛】
本题考查的知识点是由三视图还原实物图,圆柱和圆锥的体积,其中根据三视图准确分析出几何体的形状及底面半径、高等关键数据是解答本题的关键.
5、.
【分析】
根据给出的几何体的三视图可知几何体是由圆柱体和圆锥体构成,从而根据三视图的特点得知高和底面直径,代入体积公式计算即可.
【详解】
由三视图可知,几何体是由圆柱体和圆锥体构成,
圆柱和圆锥的底面直径均为2,高分别为4和1,
∴圆锥和圆柱的底面积为π,
故该几何体的体积为:4π+π=π,
故答案为:π.
【点睛】
本题考查了由三视图判断几何体,该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.
三、解答题
1、(1)见解析;(2)路灯O与地面的距离为3m
【分析】
(1)由题意连接 并延长,两条线的交点就是灯光的位置;
(2)作OF⊥MN交AB于E,证明△OAB∽△OMN,再利用相似三角形的对应高的比等于相似比建立方程求解即可.
【详解】
解:(1)如图,点即为为所求;
(2)作OF⊥MN交AB于E,如图,AB=m,EF=m,MN=2m,
∵,
∴△OAB∽△OMN,
∴AB:MN=OE:OF,
即,解得OF=3(m).
经检验:符合题意
答:路灯O与地面的距离为3m.
【点睛】
本题考查的是中心投影的性质,相似三角形的判定与性质,掌握“相似三角形的对应高的比等于相似比”是解题的关键.
2、4.8m
【分析】
根据题意得到三角形相似,利用相似三角形的对应边的比列等式计算即可;
【详解】
解:∵,
∴,,
∴,,
由题意得:,,,
∴,,
∵,
∴,
∴,,
整理得:,
解得:,
∴这盏路灯OK的高度是4.8m.
【点睛】
本题主要考查了相似三角形的判定与性质,中心投影,准确计算是解题的关键.
3、答案见解析
【分析】
根据题目条件可知,该几何体从正面看有3列,各列中小正方形的数目分别为2,2和3;从左面看有2列,各列中小正方形的数目分别为3和2;据此可画出图形.
【详解】
解:从正面看到的该几何体的形状图如下图所示:
从左面看到的该几何体的形状图如下图所示:
【点睛】
本题考查几何体的三视图画法,由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字;左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中小正方形数字中的最大数字.
4、(1)9;14;(2)画图见解析;几何体的表面积为.
【分析】
(1)根据左视图,俯视图,分别在俯视图上写出最少,最多两种情形的小正方体的个数即可解决问题;
(2)根据立方体的体积公式即可判断,分上下,左右,前后三个方向判断出正方形的个数解决问题即可.
【详解】
解:(1)观察图象可知:最少的情形有2+3+1+1+1+1=9个小正方体,
最多的情形有2+2+3+3+3+1=14个小正方体,
故答案为9,14;
(2)该几何体体积最大值为33×14=378(cm3),
体积最大时的几何体的三视图如下:
因此这个组合体的表面积为(9+6+6)×2+4=46(cm2),
故答案为:46cm2.
【点睛】
本题考查简单组合体的三视图,理解视图的意义,掌握简单组合体三视图的画法是正确解答的关键.
5、(1)见详解;(2)6
【分析】
(1)根据从正面看得到的图形是主视图,从正面看分左中右三列,左列有3个正方形,中间列有3个正方形,右边列有2个正方形,画出主视图从左边看到的图形是左视图,分三行前中后三行,从右边数前行有3个正方形,中行由3个正方形,后行1个正方形可画出左视图即可;
(2)根据立体图形的遮挡主视图、俯视图不变在俯视图中得出拿去的小正方体的个数.
【详解】
解:(1)从正面看得到的图形是主视图,从正面看分左中右三列,左列有3个正方形,中间列有3个正方形,右边列有2个正方形,可画出主视图
从左边看到的图形是左视图,分三行前中后三行,从右边数前行有3个正方形,中行由3个正方形,后行1个正方形可画出左视图
该几何体从正面,从左面看到的图形如图所示:
(2)拿掉后,剩下的几何体从正面看到的形状图和原几何体从上面看到的形状图相同,则最多可拿掉6个左列前行2个正方形,中列中行2个正方形,中列后行1个小正方形,右列中行1个正方形,共6个正方形,如图
故答案为:6.
【点睛】
本题考查简单几何体的三视图,正确想象出几何体的形状是解题关键,画三视图时注意“长对正,宽相等,高平齐”.
相关试卷
这是一份2021学年第25章 投影与视图综合与测试练习,共21页。试卷主要包含了图中几何体的左视图是,下列物体中,三视图都是圆的是,如图所示的几何体的左视图为等内容,欢迎下载使用。
这是一份沪科版九年级下册第25章 投影与视图综合与测试达标测试,共19页。试卷主要包含了图1等内容,欢迎下载使用。
这是一份沪科版九年级下册第25章 投影与视图综合与测试课时作业,共19页。试卷主要包含了下面左侧几何体的主视图是,如图几何体的主视图是等内容,欢迎下载使用。