【真题汇编】2022年山东省枣庄市中考数学一模试题(含答案解析)
展开2022年山东省枣庄市中考数学一模试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、、两地相距,甲骑摩托车从地匀速驶向地.当甲行驶小时途径地时,一辆货车刚好从地出发匀速驶向地,当货车到达地后立即掉头以原速匀速驶向地.如图表示两车与地的距离和甲出发的时间的函数关系.则下列说法错误的是( )
A.甲行驶的速度为 B.货车返回途中与甲相遇后又经过甲到地
C.甲行驶小时时货车到达地 D.甲行驶到地需要
2、若抛物线的顶点坐标为(1,-4),则抛物线与轴的交点个数为( )
A.0个 B.1个 C.2个 D.无法确定
3、如图,点,为线段上两点,,且,设,则关于的方程的解是( )
A. B. C. D.
4、下列各数中,是无理数的是( )
A.0 B. C. D.3.1415926
5、在一次“寻宝”游戏中,寻宝人已经找到两个标志点和,并且知道藏宝地点的坐标是,则藏宝处应为图中的( )
A.点 B.点 C.点 D.点
6、如图,点是线段的中点,点是的中点,若,,则线段的长度是( )
A.3cm B.4cm C.5cm D.6cm
7、下列式子运算结果为2a的是( ).
A. B. C. D.
8、已知,则∠A的补角等于( )
A. B. C. D.
9、在实数,,0.1010010001…,,中无理数有( )
A.4个 B.3个 C.2个 D.1个
10、等腰三角形的一个内角是,则它的一个底角的度数是( )
A. B.
C.或 D.或
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,点在直线上,射线平分.若,则等于___.
2、单项式的系数是______.
3、在平面直角坐标系中,直线l:与x轴交于点,如图所示依次作正方形、正方形、…、正方形,使得点、、、…在直线1上,点、、、…在y轴正半轴上,则点的坐标是________.
4、已知,在平面直角坐标系中,以原点为位似中心,将在第一象限内按相似比2:1放大后得,若点的坐标为(2,3),则点的坐标为______.
5、已知某函数的图象经过,两点,下面有四个推断:
①若此函数的图象为直线,则此函数的图象与直线平行;
②若此函数的图象为双曲线,则也在此函数的图象上;
③若此函数的图象为抛物线,且开口向下,则此函数图象一定与y轴的负半轴相交;
④若此函数的图象为抛物线,且开口向上,则此函数图象对称轴在直线左侧.
所有合理推断的序号是______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知,.
(1)请用尺规作图法,作的垂直平分线,垂足为,交于.(不要求写作法,保留作图痕迹)
(2)若线段,,求线段的长.
2、如图,是的角平分线,在的延长线上有一点D.满足.求证:.
3、如图,已知△ABC.
(1)请用尺规在图中补充完整以下作图,保留作图痕迹:
作∠ACB的角平分线,交AB于点D;作线段CD的垂直平分线,分别交AC于点E,交BC于点F;连接DE,DF;
(2)求证:四边形CEDF是菱形.
4、计算:.
5、如图,有一块直角三角形纸片,两直角边cm,cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.
-参考答案-
一、单选题
1、C
【分析】
根据函数图象结合题意,可知两地的距离为,此时甲行驶了1小时,进而求得甲的速度,即可判断A、D选项,根据总路程除以速度即可求得甲行驶到地所需要的时间,根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,据此判断B选项,求得相遇时,甲距离地的距离,进而根据货车行驶的路程除以时间即可求得货车的速度,进而求得货车到达地所需要的时间.
【详解】
解:两地的距离为,
故A选项正确,不符合题意;
故D选项正确,不符合题意;
根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,
则
即货车返回途中与甲相遇后又经过甲到地
故B选项正确,
相遇时为第4小时,此时甲行驶了,
货车行驶了
则货车的速度为
则货车到达地所需的时间为
即第小时
故甲行驶小时时货车到达地
故C选项不正确
故选C
【点睛】
本题考查了一次函数的应用,弄清楚函数图象中各拐点的意义是解题的关键.
2、C
【分析】
根据顶点坐标求出b=-2a,把b=-2a,(1,-4)代入得,再计算出即可得到结论
【详解】
解:∵抛物线的顶点坐标为(1,-4),
∴
∴
∴
把(1,-4)代入,得,
∴
∴
∴
∴抛物线与轴有两个交点
故选:C
【点睛】
本题主要考查了抛物线与x轴交点个数的确定,抛物线与x轴交点个数是由判别式确定:时,抛物线与x轴有2个交点;时,抛物线与x轴有1个交点;时,抛物线与x轴没有交点
3、D
【分析】
先根据线段的和差运算求出的值,再代入,解一元一次方程即可得.
【详解】
解:,
,
,
,
解得,
则关于的方程为,
解得,
故选:D.
【点睛】
本题考查了线段的和差、一元一次方程的应用,熟练掌握方程的解法是解题关键.
4、B
【分析】
无限不循环小数叫做无理数,有限小数或无限循环小数叫做有理数,根据无理数的定义即可作出判断.
【详解】
A.0是整数,属于有理数,故本选项不合题意;
B.是无理数,故本选项符合题意;
C.是分数,属于有理数,故本选项不合题意;
D.3.1415926是有限小数,属于有理数,故本选项不合题意;
故选:B.
【点睛】
本题考查了无理数,掌握无理数的含义是解题的关键.
5、B
【分析】
结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.
【详解】
∵点和,
∴坐标原点的位置如下图:
∵藏宝地点的坐标是
∴藏宝处应为图中的:点
故选:B.
【点睛】
本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.
6、B
【分析】
根据中点的定义求出AE和AD,相减即可得到DE.
【详解】
解:∵D是线段AB的中点,AB=6cm,
∴AD=BD=3cm,
∵E是线段AC的中点,AC=14cm,
∴AE=CE=7cm,
∴DE=AE-AD=7-3=4cm,
故选B.
【点睛】
本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.
7、C
【分析】
由同底数幂的乘法可判断A,由合并同类项可判断B,C,由同底数幂的除法可判断D,从而可得答案.
【详解】
解:故A不符合题意;
不能合并,故B不符合题意;
故C符合题意;
故D不符合题意;
故选C
【点睛】
本题考查的是同底数幂的乘法,合并同类项,同底数幂的除法,掌握“幂的运算与合并同类项”是解本题的关键.
8、C
【分析】
若两个角的和为 则这两个角互为补角,根据互补的含义直接计算即可.
【详解】
解: ,
∠A的补角为:
故选C
【点睛】
本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.
9、B
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:,是整数,属于有理数;
是分数,属于有理数;
无理数有0.1010010001…,,,共3个.
故选:B.
【点睛】
此题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
10、A
【分析】
由题意知, 100°的内角为等腰三角形的顶角,进而可求底角.
【详解】
解:∵在一个内角是 100°的等腰三角形中,该内角必为顶角
∴底角的度数为
故选A.
【点睛】
本题考查了等腰三角形的性质,三角形的内角和定理.解题的关键在于明确该三角形为钝角等腰三角形.
二、填空题
1、
【分析】
首先根据角平分线定义可得∠BOD=2∠BOC,再根据邻补角的性质可得∠AOD的度数.
【详解】
∵射线OC平分∠DOB.
∴∠BOD=2∠BOC,
∵,
∴,
∴∠AOD=180°,
故答案为:.
【点睛】
此题主要考查了角平分线定义和邻补角的定义,关键是掌握角平分线把角分成相等的两部分.需要注意角度度分秒的计算.
2、##
【分析】
单项式中的数字因数是单项式的系数,根据概念直接作答即可.
【详解】
解:单项式的系数是,
故答案为:
【点睛】
本题考查的是单项式的系数的概念,掌握“单项式的系数的概念求解单项式的系数”是解本题的关键.
3、
【分析】
根据一次函数图象上点的坐标特征结合正方形的性质可得出点A1、B1的坐标,同理可得出A2、A3、A4、A5、…及B2、B3、B4、B5、…的坐标,根据点的坐标的变化可找出变化规律“Bn(2n-1,2n-1)(n为正整数)”,依此规律即可得出结论.
【详解】
解:当y=0时,有x-1=0,
解得:x=1,
∴点A1的坐标为(1,0).
∵四边形A1B1C1O为正方形,
∴点B1的坐标为(1,1).
同理,可得出:A2(2,1),A3(4,3),A4(8,7),A5(16,15),…,
∴B2(2,3),B3(4,7),B4(8,15),B5(16,31),…,
∴Bn(2n-1,2n-1)(n为正整数),
故答案为:
【点睛】
本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“Bn(2n-1,2n-1)(n为正整数)”是解题的关键.
4、(4,6)
【分析】
根据以原点为位似中心,将在第一象限内按相似比2:1放大后得,即可得出对应点的坐标应乘以2,即可得出点的坐标.
【详解】
解:根据以原点为位似中心,将在第一象限内按相似比2:1放大后得,
∴对应点的坐标应乘以2,
∵点的坐标为(2,3),
∴点的坐标为,即(4,6)
故答案为(4,6).
【点睛】
本题主要考查了关于原点对称的位似图形的性质,得出对应点的坐标乘以k或-k是解答本题的关键.
5、①②④
【分析】
分别根据过A、B两点的函数是一次函数、二次函数时,相应的函数的性质进行判断即可.
【详解】
解:①过,两点的直线的关系式为y=kx+b,则
,
解得,
所以直线的关系式为y=x-1,
直线y=x-1与直线y=x平行,
因此①正确;
②过,两点的双曲线的关系式为,则,
所以双曲线的关系式为
当时,
∴也在此函数的图象上,
故②正确;
③若过,两点的抛物线的关系式为y=ax2+bx+c,
当它经过原点时,则有
解得,
对称轴x=-,
∴当对称轴0<x=-<时,抛物线与y轴的交点在正半轴,
当->时,抛物线与y轴的交点在负半轴,
因此③说法不正确;
④当抛物线开口向上时,有a>0,而a+b=1,即b=-a+1,
所以对称轴x=-=-=-,
因此函数图象对称轴在直线x=左侧,
故④正确,
综上所述,正确的有①②④,
故答案为:①②④.
【点睛】
本题考查一次函数、二次函数的图象和性质,待定系数法求函数的关系式,理解各种函数的图象和性质是正确判断的前提.
三、解答题
1、
(1)见解析.
(2)线段的长为5.
【分析】
(1)利用垂直平分线的作图方法直接画图即可.
(2)由垂直平分线的性质可知:,设,在中,利用勾股定理列出关于x的方程,并进行求解即可.
(1)
(1)分别以点A、C为圆心,以大于长画弧,连接两组弧的交点,与AC交于点E,与BC交于点D,如下所示:
(2)
(2)解:连接AD,如下图所示:
由垂直平分线的性质可知:
设,
在中,由勾股定理可知:
解得:
故AD的长为5.
【点睛】
本题主要是考查了垂直平分线的画法及性质、勾股定理求解边长,熟练掌握垂直平分线的作法,以及利用勾股定理列方程求边长,是解决该题的关键.
2、见解析
【分析】
根据是的角平分线和,可得∠ABE=∠D,从而得到△ABE∽△CDE,进而得到 ,即可求证.
【详解】
证明:∵是的角平分线,
∴∠ABE=∠CBD,
∵,
∴∠D=∠CBD,
∴∠ABE=∠D,
∵∠AEB=∠CED,
∴△ABE∽△CDE,
∴ ,
∵,
∴.
【点睛】
本题主要考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握有两对角相等的两个三角形相似是解题的关键.
3、
(1)见解析
(2)见解析
【分析】
(1)根据要求的步骤作角平分线和垂直平分线即可,并连接DE,DF;
(2)根据垂直平分线的性质可得,进而证明即可得,进而根据四边相等的四边形是菱形,即可证明四边形是菱形.
(1)
如图所示,即为所求,
(2)
证明:
如图,设交于点
垂直平分
在与中
四边形是菱形
【点睛】
本题考查了作角平分线和垂直平分线,菱形的判定,掌握基本作图和菱形的判定定理是解题的关键.
4、6
【分析】
根据公式、及算术平方根的概念逐个求解即可.
【详解】
解:原式.
【点睛】
本题考查了、及算术平方根的概念,属于基础题,计算过程中细心即可.
5、CD长为3cm
【分析】
在中,由勾股定理得,由折叠对称可知,cm,,,设,则,在中,由勾股定理得,计算求解即可.
【详解】
解:∵cm,cm
∴在中,
由折叠对称可知,cm,
∴cm
设,则
∴在中,由勾股定理得
即
解得
∴CD的长为3cm.
【点睛】
本题考查了轴对称,勾股定理等知识.解题的关键在于找出线段的数量关系.
2023年山东省枣庄市市中区中考数学一模试卷(含答案解析): 这是一份2023年山东省枣庄市市中区中考数学一模试卷(含答案解析),共21页。试卷主要包含了 如图所示的几何体的左视图是等内容,欢迎下载使用。
【真题汇编】2022年山东省枣庄市中考数学第一次模拟试题(含答案解析): 这是一份【真题汇编】2022年山东省枣庄市中考数学第一次模拟试题(含答案解析),共20页。试卷主要包含了有理数,已知,则的值为等内容,欢迎下载使用。
【真题汇编】2022年山东省枣庄市中考数学模拟测评 卷(Ⅰ)(含答案详解): 这是一份【真题汇编】2022年山东省枣庄市中考数学模拟测评 卷(Ⅰ)(含答案详解),共20页。试卷主要包含了方程的解是.,下列各数中,是无理数的是,如图,是的外接圆,,则的度数是等内容,欢迎下载使用。