【真题汇编】2022年江苏省南通市中考数学模拟考试 A卷(含答案详解)
展开2022年江苏省南通市中考数学模拟考试 A卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若关于x的不等式组有且仅有3个整数解,且关于y的方程的解为负整数,则符合条件的整数a的个数为( )
A.1个 B.2个 C.3个 D.4个
2、下列说法正确的是( )
A.无限小数都是无理数
B.无理数都是无限小数
C.有理数只是有限小数
D.实数可以分为正实数和负实数
3、育种小组对某品种小麦发芽情况进行测试,在测试条件相同的情况下,得到如下数据:
抽查小麦粒数 | 100 | 300 | 800 | 1000 | 2000 | 3000 |
发芽粒数 | 96 | 287 | 770 | 958 | 1923 | a |
则a的值最有可能是( )
A.2700 B.2780 C.2880 D.2940
4、在中,,,则( )
A. B. C. D.
5、一组样本数据为1、2、3、3、6,下列说法错误的是( )
A.平均数是3 B.中位数是3 C.方差是3 D.众数是3
6、多项式去括号,得( )
A. B. C. D.
7、如图,中,,,,,平分,如果点,分别为,上的动点,那么的最小值是( )
A.6 B.8 C.10 D.4.8
8、球沿坡角的斜坡向上滚动了5米,此时钢球距地面的高度是( ).
A.米 B.米 C.米 D.米
9、下列说法正确的是( )
A.掷一枚质地均匀的骰子,掷得的点数为3的概率是.
B.若AC、BD为菱形ABCD的对角线,则的概率为1.
C.概率很小的事件不可能发生.
D.通过少量重复试验,可以用频率估计概率.
10、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )
A.1 B.2 C.3 D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,C是线段AB延长线上一点,D为线段BC上一点,且,E为线段AC上一点,,若,则_________.
2、近似数0.0320有_____个有效数字.
3、已知x2﹣4x﹣1=0,则代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2=_____.
4、若则______.
5、两根长度分别为3,5的木棒,若想钉一个三角形木架,第三根木棒的长度可以是________.(写一个值即可)
三、解答题(5小题,每小题10分,共计50分)
1、百货大楼童装专柜平均每天可售出30件童装,每件盈利40元,为了迎接“周年庆”促销活动,商场决定采取适当的降价措施.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出3件.要使平均每天销售这种童装盈利1800元,那么每件童装应降价多少元?
2、已知二次函数的图像为抛物线C.
(1)抛物线C顶点坐标为______;
(2)将抛物线C先向左平移1个单位长度,再向上平移2个单位长度,得到抛物线,请判断抛物线是否经过点,并说明理由;
(3)当时,求该二次函数的函数值y的取值范围.
3、先化简,再求值
,其中,,.
4、 “119”全国消防日,某校为强化学生的消防安全意识,组织了“关注消防,珍爱家园”知识竞赛,满分为100分.现从八、九两个年级各随机抽取10名学生组成八年级代表队和九年级代表队,成绩如下(单位:分):
八年级代表队:80,90,90,100,80,90,100,90,100,80;
九年级代表队:90,80,90,90,100,70,100,90,90,100.
(1)填表:
代表队 | 平均数 | 中位数 | 方差 |
八年级代表队 | 90 |
| 60 |
九年级代表队 |
| 90 |
|
(2)结合(1)中数据,分析哪个代表队的学生竞赛成绩更好?请说明理由;
(3)学校想给满分的学生颁发奖状,如果该校九年级一共有600名学生且全部参加了知识竞赛,那么九年级大约有多少名学生可以获得奖状?
5、已知:在中,,,,点在边上,过点作,点在边上,点在的延长线上,联结.
(1)如图1,当时,求证:;
(2)如图2,当时,求线段的长.
-参考答案-
一、单选题
1、C
【分析】
解不等式组得到,利用不等式组有且仅有3个整数解得到,再解分式方程得到,根据解为负整数,得到a的取值,再取共同部分即可.
【详解】
解:解不等式组得:,
∵不等式组有且仅有3个整数解,
∴,
解得:,
解方程得:,
∵方程的解为负整数,
∴,
∴,
∴a的值为:-13、-11、-9、-7、-5、-3,…,
∴符合条件的整数a为:-13,-11,-9,共3个,
故选C.
【点睛】
本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.
2、B
【分析】
根据定义进行判断即可.
【详解】
解:A中无限小数都不一定是无理数,其中无限循环小数为有理数,故本选项错误.
B中根据无理数的定义,无理数都是无限小数,故本选项正确.
C中有理数不只是有限小数,例如无限循环小数,故本选项错误;
D中实数可以分为正实数和负实数和0,故本选项错误;
故选:B.
【点睛】
本题考查了有理数,无理数,实数的定义.解题的关键在于正确区分各名词的含义.
3、C
【分析】
计算每组小麦的发芽率,根据结果计算.
【详解】
解:∵
∴=2880,
故选:C.
【点睛】
此题考查了数据的频率估计概率,正确掌握频率公式计算频率是解题的关键.
4、B
【分析】
作出图形,设BC=3k,AB=5k,利用勾股定理列式求出AC,再根据锐角的余切即可得解.
【详解】
解:如图,
,
∴
∴设BC=3k,AB=5k,
由勾股定理得,
∴.
故选:B.
【点睛】
本题考查了求三角函数值,利用“设k法”表示出三角形的三边求解更加简便.
5、C
【分析】
根据平均数、中位数、众数和方差的定义逐一求解可得.
【详解】
A、平均数为,故此选项不符合题意;
B、样本数据为1、2、3、3、6,则中位数为3,故此选项不符合题意;
C、方差为,故此选项符合题意;
D、众数为3,故此选项不符合题意.
故选:C.
【点睛】
本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
6、D
【分析】
利用去括号法则变形即可得到结果.
【详解】
解:−2(x−2)=-2x+4,
故选:D.
【点睛】
本题考查了去括号与添括号,掌握如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反是解题的关键.
7、D
【分析】
如图所示:过点作于点,交于点,过点作于点,则,此时最小,再利用等面积法求解最小值即可.
【详解】
解:如图所示:
过点作于点,交于点,
过点作于点,
平分,
,
.
在中,,,,,,
,
,
.
即的最小值是4.8,
故选:D.
【点睛】
本题考查的是垂线段最短,角平分线的性质定理的应用,等面积法的应用,确定取最小值时点的位置是解本题的关键.
8、A
【分析】
过铅球C作CB⊥底面AB于B,在Rt△ABC中,AC=5米,根据锐角三角函数sin31°=,即可求解.
【详解】
解:过铅球C作CB⊥底面AB于B,
如图在Rt△ABC中,AC=5米,则sin31°=,
∴BC=sin31°×AC=5sin31°.
故选择A.
【点睛】
本题考查锐角三角函数,掌握锐角三角函数的定义是解题关键.
9、B
【分析】
概率是指事情发生的可能性,等可能发生的事件的概率相同,小概率事件是指发生的概率比较小,不代表不会发生,通过大量重复试验才能用频率估计概率,利用这些对四个选项一次判断即可.
【详解】
A项:掷一枚质地均匀的骰子,每个面朝上的概率都是一样的都是,故A错误,不符合题意;
B项:若AC、BD为菱形ABCD的对角线,由菱形的性质:对角线相互垂直平分得知两条线段一定垂直,则 AC⊥BD 的概率为1是正确的,故B正确,符合题意;
C项:概率很小的事件只是发生的概率很小,不代表不会发生,故C错误,不符合题意;
D项:通过大量重复试验才能用频率估计概率,故D错误,不符合题意.
故选B
【点睛】
本题考查概率的命题真假,准确理解事务发生的概率是本题关键.
10、A
【分析】
根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.
【详解】
同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;
故选:A
【点睛】
本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.
二、填空题
1、3
【分析】
设BD=a,AE=b,则CD=2a,CE=2b,根据AB=AE+BE=AE+DE-BD代入计算即可.
【详解】
设BD=a,AE=b,
∵,,
∴CD=2a,CE=2b,
∴DE=CE-CD=2b-2a=2即b-a=1,
∴AB=AE+BE=AE+DE-BD=2+b-a=2+1=3,
故答案为:3.
【点睛】
本题考查了线段的和与差,正确用线段的和差表示线段是解题的关键.
2、3
【分析】
从左边第一个不是零的数字起,到末位数字为止的数的所有数字,都叫做这个数的有效数字,进而得到答案.
【详解】
解:近似数0.0320有3、2、0等3个有效数字
故答案为:3.
【点睛】
本题考查了近似数的有效数字.解题的关键在于明确:从左边第一个不是零的数字起,到末位数字为止的数的所有数字,都叫做这个数的有效数字.
3、12
【分析】
化简代数式,将代数式表示成含有的形式,代值求解即可.
【详解】
解:
将代入得代数式的值为12
故答案为:12.
【点睛】
本题考查了完全平方公式、平方差公式以及代数式求值.解题的关键在于正确的化简代数式.
4、
【分析】
用含b的式子表示a,再把合分比式中a换成含b的式子约分即可.
【详解】
解:∵,
∴,
∴.
故答案为.
【点睛】
本题考查合分比性质问题,关键掌握比例的性质,会利用性质把比例式进行恒等变形,会根据需要选择灵活的比例式解决问题.
5、4(答案不唯一)
【分析】
根据三角形中“两边之和大于第三边,两边之差小于第三边”,进行分析得到第三边的取值范围;再进一步找到符合条件的数值.
【详解】
解:根据三角形的三边关系,得
第三边应大于两边之差,即;而小于两边之和,即,
即第三边,
故第三根木棒的长度可以是4.
故答案为:4(答案不唯一).
【点睛】
本题主要考查了三角形三边关系,熟练掌握两边之和大于第三边,两边之差小于第三边是解题的关键.
三、解答题
1、10元或20元
【分析】
设每件童装应降价x元,根据题意列出一元二次方程,解方程求解即可
【详解】
解:设每件童装应降价x元
根据题意,得
解这个方程,得
答:每件童装应降价10元或20元.
【点睛】
本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.
2、
(1)
(2)不经过,说明见解析
(3)
【分析】
(1)一般解析式化为顶点式,进行求解即可.
(2)由题意得出平移后的函数表达式,将点横坐标2代入,求纵坐标的值并与3比较,相等则抛物线过该点.
(3)先判断该函数图像开口向上,对称轴在所求自变量的范围内,可求得函数值的最小值,然后将代入解析式求解,取最大的函数值,进而得出取值范围.
(1)
解:化成顶点式为
∴顶点坐标为
故答案为:.
(2)
解:由题意知抛物线的解析式为
将代入解析式解得
∴不经过点.
(3)
解:∵对称轴直线在中
∴最小的函数值
将代入解析式得
将代入解析式得
∵
∴函数值的取值范围为.
【点睛】
本题考查了二次函数值顶点式,图像的平移,函数值的取值范围等知识.解题的关键在于正确的表示出函数解析式.
3、abc+4a2c,22.
【分析】
原式去括号合并得到最简结果,将a、b、c的值代入计算即可求出值.
【详解】
解:3a2b−[2a2b−(2abc−a2b)−4a2c]−abc
=3a2b−(2a2b−2abc+a2b−4a2c)−abc
=3a2b−2a2b+2abc-a2b+4a2c −abc
=abc+4a2c,
当a=−2,b=−3,c=1时,
原式=(-2)×(-3)×1+4×(-2)2×1=6+16=22.
【点睛】
本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.
4、
(1)90,90,80
(2)八年级代表队的学生竞赛成绩更好.因为两队平均数与中位数都相同,而八年级代表队的方差小,成绩更稳定
(3)180名
【分析】
(1)根据中位数的定义,平均数,方差的公式进行计算即可;
(2)根据平均数相等时,方差的意义进行分析即可;
(3)600乘以满分的人数所占的比例即可.
(1)
解:∵八年级代表队:80,80,80,90,90,90,90,100,100,100;
∴八年级代表队中位数为90
九年级代表队的平均数为90,
九年级代表队的方差为80
故答案为:
(2)
八年级代表队的学生竞赛成绩更好.因为两队平均数与中位数都相同,而八年级代表队的方差小,成绩更稳定
(3)
(名).
答:九年级大约有180名学生可以获得奖状
【点睛】
本题考查了求中位数,平均数,方差,样本估计总体,根据方差作决策,掌握以上知识是解题的关键.
5、
(1)见解析
(2)
【分析】
(1)根据直角三角形的性质即定义三角形的性质得出∠FBA=∠BFC,进而得到FC=2AC,由∠FBA=∠BFC,结合∠FEB=∠FBC=90°,即可判定△FEB∽△CBF,根据相似三角形的性质即可得解;
(2)过点A作AH⊥BC于点H,过点B作BM⊥CF于点M,根据等腰三角形的性质得到CH=4,根据勾股定理得到AH=3,根据锐角三角函数得到CM=,进而得到AM=,根据∠FEA=∠BMC=90°,∠FAE=∠BAM,即可判定△AEF∽△AMB,根据相似三角形的性质求解即可.
(1)
∵,
∴.
∵,
∴,,
∴.
∴,
∴,即是的中点.
∴,
∵,
∴.
∴.
在与中,
,
∴,
∴,
∴,
∴.
(2)
如图,过点作,垂足为,
∴.
∵,,
∴.
在中,由勾股定理得,,
过点作,垂足为,
∴,
,即.
∴,
∴.
在中,由勾股定理得,
∵,
∴,
∴.
在与中,
,
∴,
∴,
∵,
∴.
∴,
∴
【点睛】
此题考查了相似三角形的判定与性质、等腰三角形的性质、勾股定理,熟练掌握相似三角形的判定与性质并作出合理的辅助线是解题的关键.
【真题汇编】中考数学模拟真题练习 卷(Ⅱ)(含答案详解): 这是一份【真题汇编】中考数学模拟真题练习 卷(Ⅱ)(含答案详解),共24页。试卷主要包含了有依次排列的3个数,下列计算正确的是等内容,欢迎下载使用。
【真题汇编】最新中考数学模拟考试 A卷(含答案及详解): 这是一份【真题汇编】最新中考数学模拟考试 A卷(含答案及详解),共22页。试卷主要包含了如图,在中,,,则的值为,下列方程是一元二次方程的是,多项式去括号,得,若,则的值是等内容,欢迎下载使用。
【真题汇编】最新中考数学模拟真题练习 卷(Ⅱ)(含答案及详解): 这是一份【真题汇编】最新中考数学模拟真题练习 卷(Ⅱ)(含答案及详解),共20页。试卷主要包含了在平面直角坐标系xOy中,点A,下列四个实数中,无理数是,下列式中,与是同类二次根式的是等内容,欢迎下载使用。