【难点解析】安徽省宿州市中考数学模拟真题测评 A卷(含答案及详解)
展开安徽省宿州市中考数学模拟真题测评 A卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点 是 的角平分线 的中点, 点 分别在 边上,线段 过点 , 且 ,下列结论中, 错误的是( )
A. B. C. D.
2、筹算是中国古代计算方法之一,宋代数学家用白色筹码代表正数,用黑色筹码代表负数,图中算式一表示的是,按照这种算法,算式二被盖住的部分是( )
A. B.
C. D.
3、对于新能源汽车企业来说,2021年是不平凡的一年,无论是特斯拉还是中国的蔚来、小鹏、理想都实现了销量的成倍增长,下图是四家车企的标志,其中既是轴对称图形,又是中心对称图形的是( )
A. B.
C. D.
4、根据表中的信息判断,下列语句中正确的是( )
15 | 15.1 | 15.2 | 15.3 | 15.4 | 15.5 | 15.6 | 15.7 | 15.8 | 15.9 | 16 | |
225 | 228.01 | 231.04 | 234.09 | 237.16 | 240.25 | 243.36 | 246.49 | 249.64 | 252.81 | 256 |
A.
B.235的算术平方根比15.3小
C.只有3个正整数满足
D.根据表中数据的变化趋势,可以推断出将比256增大3.19
5、如图是一个正方体的展开图,把它折叠成正方体后,有“学”字一面的相对面上的字是( )
A.雷 B.锋 C.精 D.神
6、下列运算中,正确的是( )
A.=﹣6 B.﹣=5 C.=4 D.=±8
7、下列问题中,两个变量成正比例的是( )
A.圆的面积S与它的半径r
B.三角形面积一定时,某一边a和该边上的高h
C.正方形的周长C与它的边长a
D.周长不变的长方形的长a与宽b
8、为庆祝建党百年,六年级一班举行手工制作比赛,下图小明制作的一个小正方体盒子展开图,把展开图叠成小正方体后,有“爱”字一面的相对面的字是( )
A.的 B.祖 C.国 D.我
9、一张正方形纸片经过两次对折,并在如图所示的位置上剪去一个小正方形,打开后的图形是( )
A. B.
C. D.
10、如图,点,为线段上两点,,且,设,则关于的方程的解是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,中,,,,D是AB上的动点,以DC为斜边作等腰直角使,点E和点A位于CD的两侧,连接BE,BE的最小值为______.
2、如图,在中,,,,为的角平分线.M为边上一动点,N为线段上一动点,连接、、,当取得最小值时,的面积为______.
3、如图,P是反比例函数图象上第二象限内的一点,且矩形PEOF的面积为4,则反比例函数的解析式是______.
4、如图,直线l1∥l2∥l3,直线l4,l5被直线l1、l2、l3所截,截得的线段分别为AB,BC,DE,EF,若AB=4,BC=6,DE=3,则EF的长是 ______.
5、一个实数的平方根为与,则这个实数是________.
三、解答题(5小题,每小题10分,共计50分)
1、在平面直角坐标系中,对于点和,给出如下定义:若,则称点为点的“可控变点”
例如:点的“可控变点”为点,点的“可控变点”为点.
(1)点的“可控变点”坐标为 ;
(2)若点在函数的图象上,其“可控变点” 的纵坐标是7,求“可控变点” 的横坐标:
(3)若点在函数的图象上,其“可控变点” 的纵坐标的取值范围是,求的值.
2、列方程或方程组解应用题:
某校积极推进垃圾分类工作,拟采购30L和120L两种型号垃圾桶用于垃圾投放.已知采购5个30L垃圾桶和9个120L垃圾桶共需付费1000元;采购10个30L垃圾桶和5个120L垃圾桶共需付费700元,求30L垃圾桶和120L垃圾桶的单价.
3、如图,有一块直角三角形纸片,两直角边cm,cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.
4、 “双减”政策实施以来,我校积极探寻更为合理的学生评价方案.班主任石老师对班级学生的学习生活等采取的是量化积分制.下面统计的是博学组和笃行组连续八周的量化积分,并将得到的数据制成如下的统计表:
量化积分统计表(单位:分)
周次 组别 | 一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 |
博学组 | 12 | 14 | 16 | 14 | 14 | 13 | 15 | 14 |
笃行组 | 13 | 11 | 15 | 17 | 16 | 18 | 13 | 9 |
(1)请根据表中的数据完成下表
| 平均数 | 中位数 | 众数 | 方差 |
博学组 |
| 14 | 14 |
|
笃行组 | 14 |
|
| 8.25 |
(2)根据量化积分统计表中的数据,请在下图中画出笃行组量化积分的折线统计图.
(3)根据折线统计图中的信息,请你对这两个小组连续八周的学习生活情况作出一条简要评价.
5、已知在平面直角坐标系中,拋物线与轴交于点和点,与轴交于点 ,点是该抛物线在第一象限内一点,联结与线段相交于点.
(1)求抛物线的表达式;
(2)设抛物线的对称轴与线段交于点,如果点与点重合,求点的坐标;
(3)过点作轴,垂足为点与线段交于点,如果,求线段的长度.
-参考答案-
一、单选题
1、D
【分析】
根据AG平分∠BAC,可得∠BAG=∠CAG,再由点 是 的中点,可得 ,然后根据,可得到△DAE∽△CAB,进而得到△EAF∽△BAG,△ADF∽△ACG,即可求解.
【详解】
解:∵AG平分∠BAC,
∴∠BAG=∠CAG,
∵点 是 的中点,
∴ ,
∵,∠DAE=∠BAC,
∴△DAE∽△CAB,
∴ ,
∴∠AED=∠B,
∴△EAF∽△BAG,
∴ ,故C正确,不符合题意;
∵,∠BAG=∠CAG,
∴△ADF∽△ACG,
∴ ,故A正确,不符合题意;D错误,符合题意;
∴,故B正确,不符合题意;
故选:D
【点睛】
本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.
2、A
【分析】
参考算式一可得算式二表示的是,由此即可得.
【详解】
解:由题意可知,图中算式二表示的是,
所以算式二为
所以算式二被盖住的部分是选项A,
故选:A.
【点睛】
本题考查了有理数的加法,理解筹算的运算法则是解题关键.
3、C
【分析】
根据轴对称图形与中心对称图形的概念结合所给图形的特点即可得出答案.
【详解】
解:A、是轴对称图形,不是中心对称图形,故错误;
B、是轴对称图形,不是中心对称图形,故错误;
C、既是轴对称图形,又是中心对称图形,故正确;
D、既不是轴对称图形,也不是中心对称图形,故错误.
故选:C.
【点睛】
本题考查了中心对称图形及轴对称图形的特点,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.
4、C
【分析】
根据算术平方根的定义及表格中信息逐项分析即可.
【详解】
A.根据表格中的信息知:,
,故选项不正确;
B.根据表格中的信息知:,
∴235的算术平方根比15.3大,故选项不正确;
C.根据表格中的信息知:,
正整数或242或243,
只有3个正整数满足,故选项正确;
D.根据表格中的信息无法得知的值,
不能推断出将比256增大3.19,故选项不正确.
故选:C.
【点睛】
本题是图表信息题,考查了算术平方根,关键是正确利用表中信息.
5、D
【分析】
根据正方体的表面展开图的特征,判断相对的面即可.
【详解】
解:由正方体的表面展开图的特征可知:
“学”的对面是“神”,
故选:D.
【点睛】
本题考查了正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的关键.
6、C
【分析】
根据算术平方根的意义逐项化简即可.
【详解】
解:A.无意义,故不正确;
B.﹣=-5,故不正确;
C.=4,正确;
D.=8,故不正确;
故选C.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.
7、C
【分析】
分别列出每个选项两个变量的函数关系式,再根据函数关系式逐一判断即可.
【详解】
解: 所以圆的面积S与它的半径r不成正比例,故A不符合题意;
所以三角形面积一定时,某一边a和该边上的高h不成正比例,故B不符合题意;
所以正方形的周长C与它的边长a成正比例,故C符合题意;
所以周长不变的长方形的长a与宽b不成正比例,故D不符合题意;
故选C
【点睛】
本题考查的是两个变量成正比例,掌握“正比例函数的特点”是解本题的关键.
8、B
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
第一列的“我”与“的”是相对面,
第二列的“我”与“国”是相对面,
“爱”与“祖”是相对面.
故选:B.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
9、A
【分析】
由平面图形的折叠及图形的对称性展开图解题.
【详解】
由第一次对折后中间有一个矩形,排除B、C;
由第二次折叠矩形正在折痕上,排除D;
故选:A.
【点睛】
本题考查的是学生的立体思维能力及动手操作能力,关键是由平面图形的折叠及图形的对称性展开图解答.
10、D
【分析】
先根据线段的和差运算求出的值,再代入,解一元一次方程即可得.
【详解】
解:,
,
,
,
解得,
则关于的方程为,
解得,
故选:D.
【点睛】
本题考查了线段的和差、一元一次方程的应用,熟练掌握方程的解法是解题关键.
二、填空题
1、##
【分析】
以AC为斜边在AC右侧作等腰直角三角形AE1C,边E1C与AB 交于点G,连接E1E延长与AB交于点F,作BE2⊥E1F于点E2,由Rt△DCE与Rt△AE1C为等腰直角三角形,可得∠DCE=∠CDE=∠ACE1=∠CAE1=45°,于是∠ACD=∠E1CE,因此△ACD∽△E1CE,所以∠CAD=∠CE1E=30°,所以E在直线E1E上运动,当BE2⊥E1F时,BE最短,即为BE2的长.
【详解】
解:如图,以AC为斜边在AC右侧作等腰直角三角形AE1C,边E1C与AB 交于点G,连接E1E并延长与AB交于点F,作BE2⊥E1F于点E2,连接CF,
∵Rt△DCE与Rt△AE1C为等腰直角三角形,
∴∠DCE=∠CDE=∠ACE1=∠CAE1=45°,
∴∠ACD=∠E1CE,
,
∴△ACD∽△E1CE,
∴∠CAD=∠CE1E=30°,
∵D为AB上的动点,
∴E在直线E1E上运动,
当BE2⊥E1F时,BE最短,即为BE2的长.
在△AGC与△E1GF中,
∠AGC=∠E1GF,∠CAG=∠GE1F,
∴∠GFE1=∠ACG=45°,
∴∠BFE2=45°,
∵,
∴ ,
∴∠AE1C=∠AFC=90°,
∵AC=6,∠BAC=30°,∠ACB=90°,
∴BC=AC=,
又∵∠ABC=60°,
∴∠BCF=30°,
∴BF=BC=,
∴BE2=BF=,
即BE的最小值为.
故答案为:
【点睛】
本题考查了等腰直角三角形的性质,勾股定理的应用,含30度角的直角三角形的性质,相似三角形的判定和性质,熟练构造等腰直角三角形是解本题的关键.
2、
【分析】
利用点M关于AC的对称点确定N点,当、、三点共线且时,的长取得最小值,再利用三角形的面积公式求出,在利用勾股定理求后即可求出的面积.
【详解】
∵为的角平分线,将沿翻折,
∴的对应点一定在边上.
∴
∴当、、三点共线且时,
的长取得最小值
∵在中,,,
∴
∵
∴
∴在中,
∴.
【点睛】
本题考查了最短路径问题以及勾股定理,灵活运用勾股定理是解题的关键.
3、##
【分析】
因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|,再根据反比例函数的图象所在的象限确定k的值,即可求出反比例函数的解析式.
【详解】
解:由图象上的点所构成的矩形PEOF的面积为4可知,
S=|k|=4,k=±4.
又由于反比例函数的图象在第二、四象限,k<0,
则k=-4,所以反比例函数的解析式为 .
故答案为: .
【点睛】
本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.
4、4.5
【分析】
根据平行线分线段成比例定理列出比例式,把已知数据代入计算即可.
【详解】
解:∵l1//l2//l3,
∴,
∵AB=4,BC=6,DE=3,
∴,
解得:EF=4.5,
故答案为:4.5.
【点睛】
本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.
5、
【分析】
根据平方根的性质,一个正数的平方根有两个,互为相反数,0的平方根是它本身,即可得到结果.
【详解】
解:根据题意得:
①这个实数为正数时:
3x+3+x-1=0,
∴x=-,
∴(x-1)2=,
②这个实数为0时:
3x+3=x-1,
∴x=-2,
∵x-1=-3≠0,
∴这个实数不为0.
故答案为:.
【点睛】
本题考查了平方根的性质,分类讨论并进行取舍是本题的关键.
三、解答题
1、
(1)
(2)“可控变点” 的横坐标为3或
(3)
【分析】
(1)根据可控变点的定义,可得答案;
(2)根据可控变点的定义,可得函数解析式,根据自变量与函数值得对应关系,可得答案;
(3)根据可控变点的定义,可得函数解析式,根据自变量与函数值得对应关系,结合图象可得答案.
(1)
,
,
即点的“可控变点”坐标为;
(2)
由题意,得
的图象上的点的“可控变点”必在函数的图象上,如图1,
“可控变点” 的纵坐标的是7,
当时,解得,
当时,解得,
故答案为:3或;
(3)
由题意,得
y=-x2+16的图象上的点P的“可控变点”必在函数y′= 的图象上,如图2,
当x=-5时,x2-16=9,
∴-16<y′=x2-16≤9(x<0),
∴y′=-16在y′=-x2+16(x≥0)上,
∴-16=-x2+16,
∴x=4,
∴实数a的值为4.
【点睛】
本题考查了新定义,二次函数的图象与性质,利用可控变点的定义得出函数解析式是解题关键,又利用了自变量与函数值的对应关系.
2、30L垃圾桶的单价是20元,120L垃圾桶的单价是100元
【分析】
设垃圾桶的单价是元,垃圾桶的单价是元,等量关系为:买5个30L垃圾桶的钱+买9个120L垃圾桶的钱=1000 ;买10个30L垃圾桶的钱+买5个120L垃圾桶的钱=700 ;根据这两个等量关系列出方程组并解方程组即可.
【详解】
设垃圾桶的单价是元,垃圾桶的单价是元,
依题意得:,
解得:.
即垃圾桶的单价是20元,垃圾桶的单价是100元.
【点睛】
本题考查了二元一次方程组的应用,关键是理解题意,找到等量关系并正确列出方程组.
3、CD长为3cm
【分析】
在中,由勾股定理得,由折叠对称可知,cm,,,设,则,在中,由勾股定理得,计算求解即可.
【详解】
解:∵cm,cm
∴在中,
由折叠对称可知,cm,
∴cm
设,则
∴在中,由勾股定理得
即
解得
∴CD的长为3cm.
【点睛】
本题考查了轴对称,勾股定理等知识.解题的关键在于找出线段的数量关系.
4、
(1)见解析
(2)见解析
(3)博学组的学生学习生活更好
【分析】
(1)根据平均数,中位数,众数,方差的定义求解即可;
(2)根据题目所给数据画出对应的折线统计图即可;
(3)可从众数和方差的角度作评价即可.
(1)
解:由题意得博学组的平均数,
∴博学组的方差
把笃行组的积分从小到大排列为:9、11、13、13、15、16、17、18,
∴笃行组的中位数,
∵笃行组中13出现的次数最多,
∴笃行组的众数为13,
∴填表如下:
| 平均数 | 中位数 | 众数 | 方差 |
博学组 | 14 | 14 | 14 | 1.25 |
笃行组 | 14 | 14 | 13 | 8.25 |
(2)解:如图所示,即为所求;
(3)
解:由(1)可知,博学组和笃行组的平均数和中位数都相同,但是博学组的众数大于笃行组的众数,博学组的方差小于笃行组的方差,
∴可知博学组的学生学习生活更好.
【点睛】
本题主要考查了求平均数,众数,中位数,方差,画折线统计图,用方差和众数作出评价等等,熟知相关知识是解题的关键.
5、
(1)
(2)
(3)
【分析】
(1)将点和点代入,即可求解;
(2)分别求出和直线的解析式为,可得,,再求直线的解析式为,联立,即可求点;
(3)设,则,则,用待定系数法求出直线的解析式为,联立,可求出,,直线与轴交点,则,再由,可得,则有方程,求出,即可求.
(1)
解:将点和点代入,
,
,
;
(2)
解:,
对称轴为直线,
令,则,
解得或,
,
设直线的解析式为,
,
,
,
,,
设直线的解析式为,
,
,
,
联立,
或(舍,
;
(3)
解:
设,则,
,
设直线的解析式为,
,
,
,
联立,
,
,,
直线与轴交点,
,
,
,
轴,
,
,
,
,
,
,
,
.
【点睛】
本题是二次函数的综合题,解题的关键是熟练掌握二次函数的图象及性质,会求二次函数的交点坐标,本题计算量较大,准确的计算也是解题的关键.
2022年安徽省淮北市中考数学模拟真题测评 A卷(含答案及详解): 这是一份2022年安徽省淮北市中考数学模拟真题测评 A卷(含答案及详解),共18页。
【难点解析】中考数学模拟测评 卷(Ⅰ)(含答案详解): 这是一份【难点解析】中考数学模拟测评 卷(Ⅰ)(含答案详解),共24页。试卷主要包含了已知线段AB,在数2,-2,,中,最小的数为等内容,欢迎下载使用。
【难点解析】中考数学模拟真题 (B)卷(含答案详解): 这是一份【难点解析】中考数学模拟真题 (B)卷(含答案详解),共22页。试卷主要包含了下列说法中,不正确的是,下列利用等式的性质,错误的是,下列方程组中,二元一次方程组有,二次函数y=,如图,OM平分,,,则.,下列命题中,是真命题的是等内容,欢迎下载使用。