![【难点解析】2022年广东省深圳市南山区中考数学模拟真题 (B)卷(含答案详解)01](http://img-preview.51jiaoxi.com/2/3/12676651/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【难点解析】2022年广东省深圳市南山区中考数学模拟真题 (B)卷(含答案详解)02](http://img-preview.51jiaoxi.com/2/3/12676651/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【难点解析】2022年广东省深圳市南山区中考数学模拟真题 (B)卷(含答案详解)03](http://img-preview.51jiaoxi.com/2/3/12676651/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【难点解析】2022年广东省深圳市南山区中考数学模拟真题 (B)卷(含答案详解)
展开2022年广东省深圳市南山区中考数学模拟真题 (B)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、筹算是中国古代计算方法之一,宋代数学家用白色筹码代表正数,用黑色筹码代表负数,图中算式一表示的是,按照这种算法,算式二被盖住的部分是( )
A. B.
C. D.
2、下列命题,是真命题的是( )
A.两条直线被第三条直线所截,内错角相等
B.邻补角的角平分线互相垂直
C.相等的角是对顶角
D.若,,则
3、在一次“寻宝”游戏中,寻宝人已经找到两个标志点和,并且知道藏宝地点的坐标是,则藏宝处应为图中的( )
A.点 B.点 C.点 D.点
4、若点P位于平面直角坐标系第四象限,且点P到x轴的距离是1,到y轴的距离是2,则点P的坐标为( )
A. B. C. D.
5、已知正五边形的边长为1,则该正五边形的对角线长度为( ).
A. B. C. D.
6、已知二次函数,则关于该函数的下列说法正确的是( )
A.该函数图象与轴的交点坐标是
B.当时,的值随值的增大而减小
C.当取1和3时,所得到的的值相同
D.将的图象先向左平移两个单位,再向上平移5个单位得到该函数图象
7、如图所示,动点从第一个数的位置出发,每次跳动一个单位长度,第一次跳动一个单位长度到达数的位置,第二次跳动一个单位长度到达数的位置,第三次跳动一个单位长度到达数的位置,第四次跳动一个单位长度到达数的位置,……,依此规律跳动下去,点从跳动次到达的位置,点从跳动次到达的位置,……,点、、……在一条直线上,则点从跳动( )次可到达的位置.
A. B. C. D.
8、如图,小玲将一个正方形纸片剪去一个宽为的长条后,再从剩下的长方形纸片上剪去一个宽为的长条,如果两次剪下的长条面积正好相等,那么原正方形的边长为( )cm.
A. B. C. D.
9、地球赤道的周长是40210000米,将40210000用科学记数法表示应为( )
A. B. C. D.
10、下列方程中,解为的方程是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图是一个运算程序的示意图,若开始输入x的值为50,我们发现第1次输出的结果为25,第2次输出的结果为32,……则第2022次输出的结果为_________.
2、若a、b为实数,且,则的值是____.
3、如图,已知AD为的高,,以AB为底边作等腰,,交AC于F,连ED,EC,有以下结论:①;②;③;④;其中正确的是___.
4、写出一个比1大且比2小的无理数______.
5、一个实数的平方根为与,则这个实数是________.
三、解答题(5小题,每小题10分,共计50分)
1、以下表格是某区一户人家2021年11月份、12月份两次缴纳家庭使用自来水水费的回执,已知污水费、水资源费等都和用水量有关,根据表中提供的信息回答下列问题:
表1:
上月指数 | 387 | 本月指数 | 403 |
加减水量 | 0吨 | 水量 | l6吨 |
污水费 | 16.8元 | 垃圾费 | 8.00元 |
水资源费 | 3.20元 |
|
|
水价 | 1.45 | 水费23.20元 |
|
违约金 | 0.00元 |
|
|
合计 | 51.20元 | 缴费状态 | 已缴 |
表2:
上月指数 | 403 | 本月指数 | 426 |
加减水量 | 0吨 | 水量 | a吨 |
污水费 | b元 | 垃圾费 | 8.00元 |
水资源费 | 4.60元 |
|
|
水价 | 1.45 | 水费33.35元 |
|
违约金 | 0.00元 |
|
|
合计 | c元 | 缴费状态 | 已缴 |
(1)根据表1可知,污水费每吨 元,水资源费每吨 元;
(2)请写出表2中a= ,b= ,c= ;
(3)若该用户某个月份缴纳该项费用回执中合计是89元,则该用户这个月共消耗自来水多少吨?
2、计算:.
3、如图,已知直线和直线外三点、、,按下列要求用尺规作图(不写作法,保留作图痕迹):
(1)作线段、射线;
(2)在射线上确定点,使得;
(3)在直线上确定点,使得点到点、点的距离之和最短.
4、如图,在的网格纸中,点O和点A都是格点,以O为圆心,OA为半径作圆.请仅用无刻度的直尺完成以下画图:(不写画法,保留作图痕迹.)
(1)在图①中画⊙O的一个内接正八边形ABCDEFGH;
(2)在图②中画⊙O的一个内接正六边形ABCDEF.
5、如图,是内部的一条射线,是内部的一条射线,是内部的一条射线.
(1)如图1,、分别是、的角平分线,已知,,求的度数;
(2)如图2,若,,且,求的度数.
-参考答案-
一、单选题
1、A
【分析】
参考算式一可得算式二表示的是,由此即可得.
【详解】
解:由题意可知,图中算式二表示的是,
所以算式二为
所以算式二被盖住的部分是选项A,
故选:A.
【点睛】
本题考查了有理数的加法,理解筹算的运算法则是解题关键.
2、B
【分析】
利用平行线的性质、邻补角的定义及性质、对顶角的定义等知识分别判断后即可确定正确的选项.
【详解】
解:A、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意;
、邻补角的角平分线互相垂直,正确,是真命题,符合题意;
、相等的角不一定是对顶角,故错误,是假命题,不符合题意;
、平面内,若,,则,故原命题错误,是假命题,不符合题意,
故选:.
【点睛】
考查了命题与定理的知识,解题的关键是了解平行线的性质、邻补角的定义及性质、对顶角的定义等知识,难度不大.
3、B
【分析】
结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.
【详解】
∵点和,
∴坐标原点的位置如下图:
∵藏宝地点的坐标是
∴藏宝处应为图中的:点
故选:B.
【点睛】
本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.
4、D
【分析】
第四象限中横坐标为正,纵坐标为负,到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,进而可表示出点坐标.
【详解】
解:由题意知点的横坐标为2,纵坐标为
∴点的坐标为
故选D.
【点睛】
本题考查了直角坐标系中的点坐标.解题的关键在于确定横、纵坐标的值.
5、C
【分析】
如图,五边形ABCDE为正五边形, 证明 再证明可得:设AF=x,则AC=1+x,再解方程即可.
【详解】
解:如图,五边形ABCDE为正五边形,
∴五边形的每个内角均为108°,
∴∠BAG=∠ABF=∠ACB=∠CBD= 36°,
∴∠BGF=∠BFG=72°,
设AF=x,则AC=1+x,
解得:,
经检验:不符合题意,舍去,
故选C
【点睛】
本题考查的是正多边形的性质,等腰三角形的判定与性质,相似三角形的判定与性质,证明是解本题的关键.
6、C
【分析】
把,代入,即可判断A,由二次函数的图象开口向上,对称轴是直线,即可判断B,当取和,代入,即可判断C,根据函数图象的平移规律,即可判断D.
【详解】
∵二次函数的图象与轴的交点坐标是,
∴A选项错误;
∵二次函数的图象开口向上,对称轴是直线,
∴当时,的值随值的增大而增大,
∴B选项错误;
∵当取和时,所得到的的值都是11,
∴C选项正确;
∵将的图象先向左平移两个单位,再向上平移个单位得到的图象,
∴D选项错误.
故选:C.
【点睛】
本题主要考查二次函数的图象和性质,理解二次函数的性质是解题的关键.
7、B
【分析】
由题意可得:跳动个单位长度到 从到再跳动个单位长度,归纳可得:从上一个点跳动到下一个点跳动的单位长度是连续的三个正整数的和,从而可得答案.
【详解】
解:由题意可得:跳动个单位长度到
从到再跳动个单位长度,
归纳可得:
结合
所以点从跳动到达跳动了:
个单位长度.
故选B
【点睛】
本题考查的是数字规律的探究,有理数的加法运算,掌握“从具体到一般的探究方法及运用发现的规律解题”是关键.
8、B
【分析】
设正方形的边长为x cm,则第一个长条的长为x cm,宽为2cm,第二个长条的长为(x-2)cm,宽为3cm,根据两次剪下的长条面积正好相等列方程求解.
【详解】
解:设正方形的边长为x cm,则第一个长条的长为x cm,宽为2cm,第二个长条的长为(x-2)cm,宽为3cm,
依题意得:2x=3(x-2),
解得x=6
故选:B.
【点睛】
本题考查了由实际问题抽象出一元一次方程,找准等量关系,正值列出一元一次方程是解题的关键.
9、A
【分析】
科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以
【详解】
解:40210000
故选:A
【点睛】
本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
10、B
【分析】
把x=5代入各个方程,看看是否相等即可
【详解】
解:A. 把x=5代入得:左边=8,右边=5,左边≠右边,所以,不是方程的解,故本选项不符合题意;
B. 把x=5代入得:左边=3,右边=3,左边=右边,所以,是方程的解,故本选项符合题意;
C. 把x=5代入得:左边=15,右边=10,左边≠右边,所以,不是方程的解,故本选项不符合题意;
D. 把x=5代入得:左边=7,右边=3,左边≠右边,所以,不是方程的解,故本选项不符合题意;
故选:B
【点睛】
本题考查了一元一次方程的解,能使方程两边都相等的未知数的值是方程的解,能熟记一元一次方程的解的定义是解答本题的关键
二、填空题
1、2
【分析】
根据设计的程序进行计算,找到循环的规律,根据规律推导计算.
【详解】
解:由设计的程序知,依次输出的结果是25,32,16,8,4,2,1,8,4,2,,发现从第4个数开始,以8,4,2,1循环出现,
则,,
故第2022次输出的结果是2.
故答案为:2.
【点睛】
本题考查数字的变化类,解题的关键是明确题意,发现数字的变化特点,求出相应的输出结果.
2、
【分析】
由,可得且 再求解的值,从而可得答案.
【详解】
解:,
且
解得:
故答案为:
【点睛】
本题考查的是实数的性质,非负数的性质,求解代数式的值,掌握“绝对值与偶次方的非负性”是解本题的关键.
3、①③
【分析】
只要证明,,是的中位线即可一一判断;
【详解】
解:如图延长交于,交于.设交于.
,,
,
,,
,故①正确,
,,
,
,
,
不垂直,故②错误,
,
,
,,
,
,
是等腰直角三角形,平分,
,
,
,
,
,故③正确,
,
,
,
,
,故④正确.
故答案是:①③.
【点睛】
本题考查等腰直角三角形的性质和判定、全等三角形的判定和性质、三角形中位线定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.
4、故答案为:
【点睛】
本题以程序为背景考查了求代数式的值,关键是弄清楚图示给出的计算程序.
3.答案不唯一,如、等
【分析】
根据无理数的大小比较和无理数的定义写出范围内的一个数即可.
【详解】
解:一个比1大且比2小的无理数有,等,
故答案为:答案不唯一,如、等.
【点睛】
本题考查了对估算无理数和无理数的定义的应用,注意:答案不唯一.
5、
【分析】
根据平方根的性质,一个正数的平方根有两个,互为相反数,0的平方根是它本身,即可得到结果.
【详解】
解:根据题意得:
①这个实数为正数时:
3x+3+x-1=0,
∴x=-,
∴(x-1)2=,
②这个实数为0时:
3x+3=x-1,
∴x=-2,
∵x-1=-3≠0,
∴这个实数不为0.
故答案为:.
【点睛】
本题考查了平方根的性质,分类讨论并进行取舍是本题的关键.
三、解答题
1、
(1)
(2),,
(3)该用户这个月共消耗自来水30吨.
【分析】
(1)由污水费除以用水的数量可得污水费的单价,由水资源费除以用水的数量可得水资源费的单价;
(2)由本月指数减去上月指数可得用水量,由用水数量乘以污水费的单价可得污水费用,再把污水费,水资源费,垃圾费,水费相加即可得到的值;
(3)设该用户这个月共消耗自来水吨,再由污水费,水资源费,垃圾费,水费之和为89列方程解方程即可.
(1)
解:由表1可得:污水费每吨(元),水资源费每吨(元),
故答案为:
(2)
解:用水量(吨),
污水费(元),
总费用(元).
故答案为:
(3)
解:设该用户这个月共消耗自来水吨,则
整理得:
解得:
答:设该用户这个月共消耗自来水吨.
【点睛】
本题考查的是有理数的加减乘除运算的实际应用,一元一次方程的应用,理解题意列出运算式,确定相等关系列方程是解本题的关键.
2、
【分析】
去括号合并同类项即可.
【详解】
解:原式
.
【点睛】
本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.
3、
(1)见解析
(2)见解析
(3)见解析
【分析】
(1)根据直线和射线的定义作图即可;
(2)以点C为圆心,BC为半径画弧,与射线BC交于点D即可;
(3)根据两点之间,线段最短,连接AC,与直线l交于点E即可.
(1)
解:如图,线段AB,射线BC即为所求;
(2)
如图,点D即为所求;
(3)
如图,点E即为所求.
【点睛】
本题考查了作图-复杂作图、直线、射线、线段、线段的性质,解决本题的关键是掌握线段的性质.
4、
(1)见解析
(2)见解析
【分析】
(1)在图①中画⊙O的一个内接正八边形ABCDEFGH即可;
(2)在图②中画⊙O的一个内接正六边形ABCDEF即可.
(1)
解:如图,正八边形ABCDEFGH即为所求:
(2)
解:如图,正六边形ABCDEF即为所求:
【点睛】
本题考查了作图-应用与设计作图、正多边形和圆,解决本题的关键是准确画图.
5、
(1)110°
(2)100°
【分析】
(1)由OM是∠AOB的角平分线,∠AOB=30°,得到,则∠BON=∠MON-∠BOM=55°,再由ON是∠BOC的角平分线,得到∠BOC=2∠BON=110°;
(2)设∠AOM=∠NOC=x,则∠AOB=4x,可推出∠BOM=3x,∠BOM:∠BON=3:2,得到∠BON=2x,根据∠AOC=∠AOB+∠BON+∠NOC=7x=140°,得到x=20°,则∠MON=∠BOM+∠BON=5x=100°.
(1)
解:∵OM是∠AOB的角平分线,∠AOB=30°,
∴,
∵∠MON=70°,
∴∠BON=∠MON-∠BOM=55°,
∵ON是∠BOC的角平分线,
∴∠BOC=2∠BON=110°;
(2)
解:设∠AOM=∠NOC=x,则∠AOB=4x,
∴∠BOM=∠AOB-∠AOM=3x,
∵∠BOM:∠BON=3:2,
∴∠BON=2x,
∴∠AOC=∠AOB+∠BON+∠NOC=7x=140°,
∴x=20°,
∴∠MON=∠BOM+∠BON=5x=100°.
【点睛】
本题主要考查了几何中角度的计算,角平分线的定义,解题的关键在于能够熟练掌握相关知识.
【真题汇编】2022年广东省深圳市南山区中考数学模拟真题 (B)卷(含答案及解析): 这是一份【真题汇编】2022年广东省深圳市南山区中考数学模拟真题 (B)卷(含答案及解析),共21页。试卷主要包含了已知点D,已知点等内容,欢迎下载使用。
【真题汇编】2022年广东省深圳市南山区中考数学真题模拟测评 (A)卷(含答案详解): 这是一份【真题汇编】2022年广东省深圳市南山区中考数学真题模拟测评 (A)卷(含答案详解),共25页。试卷主要包含了如图,点在直线上,平分,,,则,已知,则的值为等内容,欢迎下载使用。
【真题汇编】2022年广东省深圳市福田区中考数学模拟真题 (B)卷(含答案详解): 这是一份【真题汇编】2022年广东省深圳市福田区中考数学模拟真题 (B)卷(含答案详解),共23页。